Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 5, Pages 22–40 (Mi ivm9110)  

This article is cited in 3 scientific papers (total in 3 papers)

Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a polynomial identity

M. S. Eryashkin

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (311 kB) Citations (3)
References:
Abstract: We consider an action of a finite-dimensional Hopf algebra $H$ on a PI-algebra. We prove that an $H$-semiprime $H$-module algebra $A$ has a Frobenius artinian classical ring of quotients $Q$ if $A$ has a finite set of $H$-prime ideals with zero intersection. The ring of quotients $Q$ is an $H$-semisimple $H$-module algebra and finitely generated module over the subalgebra of central invariants. Moreover, if the algebra $A$ is projective module of constant rank over its center then $A$ is integral over the subalgebra of central invariants.
Keywords: Hopf algebras, invariant theory, PI-algebras, rings of quotients.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-31200
Ministry of Education and Science of the Russian Federation НШ-941.2014.1
1.2045.2014
Received: 30.09.2014
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, Volume 60, Issue 5, Pages 18–34
DOI: https://doi.org/10.3103/S1066369X16050029
Bibliographic databases:
Document Type: Article
UDC: 512.667
Language: Russian
Citation: M. S. Eryashkin, “Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a polynomial identity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 5, 22–40; Russian Math. (Iz. VUZ), 60:5 (2016), 18–34
Citation in format AMSBIB
\Bibitem{Ery16}
\by M.~S.~Eryashkin
\paper Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a~polynomial identity
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2016
\issue 5
\pages 22--40
\mathnet{http://mi.mathnet.ru/ivm9110}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2016
\vol 60
\issue 5
\pages 18--34
\crossref{https://doi.org/10.3103/S1066369X16050029}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000409282900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971278451}
Linking options:
  • https://www.mathnet.ru/eng/ivm9110
  • https://www.mathnet.ru/eng/ivm/y2016/i5/p22
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025