|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2016, Number 5, Pages 22–40
(Mi ivm9110)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a polynomial identity
M. S. Eryashkin Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Abstract:
We consider an action of a finite-dimensional Hopf algebra $H$ on a PI-algebra. We prove that an $H$-semiprime $H$-module algebra $A$ has a Frobenius artinian classical ring of quotients $Q$ if $A$ has a finite set of $H$-prime ideals with zero intersection. The ring of quotients $Q$ is an $H$-semisimple $H$-module algebra and finitely generated module over the subalgebra of central invariants. Moreover, if the algebra $A$ is projective module of constant rank over its center then $A$ is integral over the subalgebra of central invariants.
Keywords:
Hopf algebras, invariant theory, PI-algebras, rings of quotients.
Received: 30.09.2014
Citation:
M. S. Eryashkin, “Invariants and rings of quotients of $H$-semiprime $H$-module algebra satisfying a polynomial identity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 5, 22–40; Russian Math. (Iz. VUZ), 60:5 (2016), 18–34
Linking options:
https://www.mathnet.ru/eng/ivm9110 https://www.mathnet.ru/eng/ivm/y2016/i5/p22
|
|