Abstract:
We consider the classical problem of linear conjugation for analytic functions on piecewise-smooth curve in the whole scale of weighted Hölder spaces and describe its solvability in dependence on a weight order.
Citation:
G. N. Aver'yanov, A. P. Soldatov, “Linear conjugation problem for analytic functions in the weighted Hölder spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 9, 56–61; Russian Math. (Iz. VUZ), 59:9 (2015), 47–50
\Bibitem{AveSol15}
\by G.~N.~Aver'yanov, A.~P.~Soldatov
\paper Linear conjugation problem for analytic functions in the weighted H\"older spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2015
\issue 9
\pages 56--61
\mathnet{http://mi.mathnet.ru/ivm9035}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2015
\vol 59
\issue 9
\pages 47--50
\crossref{https://doi.org/10.3103/S1066369X15090066}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84943257511}
Linking options:
https://www.mathnet.ru/eng/ivm9035
https://www.mathnet.ru/eng/ivm/y2015/i9/p56
This publication is cited in the following 4 articles:
Abdurauf B. Rasulov, Natalia V. Yakivchik, “Boundary Value Problems for Equation with the Cauchy–Riemann Operator Singular Along the Boundary of a Rectangular Domain”, J Math Sci, 2025
A. B. Rasulov, N. V. Yakivchik, “Integral Representation of Solutions and Riemann–Hilbert Type Problem for the Cauchy–Riemann Equation with Strong Singularity in the Lower Order Coefficient in a Domain with Piecewise Smooth Boundary”, Comput. Math. and Math. Phys., 64:11 (2024), 2643
A. P. Soldatov, Tran Quang Vuong, “The linear conjugation problem for bianalytic functions”, Russian Math. (Iz. VUZ), 60:12 (2016), 62–66
E. S. Meshcheryakova, A. P. Soldatov, “Riemann–Hilbert problem in a family of weighted Hölder spaces”, Differ. Equ., 52:4 (2016), 495–504