Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, Number 5, Pages 69–74 (Mi ivm9001)  

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

Ideal $F$-norms on $C^*$-algebras

A. M. Bikchentaev

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (194 kB) Citations (6)
References:
Abstract: We show that every noncompactness measure on a $W^*$-algebra is an ideal $F$-pseudonorm. We establish the criterion of right Fredholm property of an element with respect to $W^*$-algebra. We prove that the element $-I$ realizes maximum distance from the positive element to the subset of all isometries of unital $C^*$-algebra, here $I$ is the unit of $C^*$-algebra. We also consider differences of two finite products of elements from the unit ball of $C^*$-algebra and obtain an estimate of their ideal $F$-pseudonorms. The paper is concluded with the convergence criterion in complete ideal $F$-norm for two series of elements from $W^*$-algebra.
Keywords: $C^*$-algebra, $W^*$-algebra, trace, Hilbert space, linear operator, Fredholm operator, isometry, unitary operator, compact operator, ideal, ideal $F$-norm, measure of noncompactness.
Received: 13.10.2014
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, Volume 59, Issue 5, Pages 58–63
DOI: https://doi.org/10.3103/S1066369X15050084
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.986
Language: Russian
Citation: A. M. Bikchentaev, “Ideal $F$-norms on $C^*$-algebras”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 5, 69–74; Russian Math. (Iz. VUZ), 59:5 (2015), 58–63
Citation in format AMSBIB
\Bibitem{Bik15}
\by A.~M.~Bikchentaev
\paper Ideal $F$-norms on $C^*$-algebras
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2015
\issue 5
\pages 69--74
\mathnet{http://mi.mathnet.ru/ivm9001}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2015
\vol 59
\issue 5
\pages 58--63
\crossref{https://doi.org/10.3103/S1066369X15050084}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928615947}
Linking options:
  • https://www.mathnet.ru/eng/ivm9001
  • https://www.mathnet.ru/eng/ivm/y2015/i5/p69
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:398
    Full-text PDF :231
    References:122
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024