Abstract:
We obtain a condition of resolvablity of boundary-value problem on restoring holomorphic function by a given jump on a contour with limit continuum. An example of such contour is a graph of the function $y=\sin\frac\pi x$, $0<x\le1$, whose limit continuum is a segment $[-i,i]$ of imaginary axis.
Keywords:
contour with limit continuum, analytic function, the jump boundary value problem.
Citation:
B. A. Kats, S. R. Mironova, A. Yu. Pogodina, “A problem on a jump on a contour with limit continuum”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2, 70–75; Russian Math. (Iz. VUZ), 59:2 (2015), 57–61
\Bibitem{KatMirPog15}
\by B.~A.~Kats, S.~R.~Mironova, A.~Yu.~Pogodina
\paper A problem on a~jump on a~contour with limit continuum
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2015
\issue 2
\pages 70--75
\mathnet{http://mi.mathnet.ru/ivm8975}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2015
\vol 59
\issue 2
\pages 57--61
\crossref{https://doi.org/10.3103/S1066369X15020085}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84921879492}
Linking options:
https://www.mathnet.ru/eng/ivm8975
https://www.mathnet.ru/eng/ivm/y2015/i2/p70
This publication is cited in the following 1 articles:
B. A. Kats, S. R. Mironova, A. Yu. Pogodina, “Jump boundary-value problem on a contour with elongate singularities”, Russian Math. (Iz. VUZ), 61:1 (2017), 10–13