|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, Number 1, Pages 60–70
(Mi ivm8965)
|
|
|
|
Algebras of the equivariant cohomologies of an $\mathfrak F$-classifying $T^k$-spaces
I. V. Usimov Chair of Geometry, Topology and Mathematics Teaching Principles,
Belarus State University, 4 Nezavisimosti Ave., Minsk, 200050 Republic of Belarus
Abstract:
We consider equivariant cohomologies generated by the Borel functor $ E_\mathfrak F$ for the family of orbit types $\mathfrak F\subset\mathrm{Conj}_G$, which translates equivariant homotopy category EQUIV-HOMOT in $\mathfrak F$-isovariant homotopy category $\mathrm{ISOV}_\mathfrak F$-$\mathrm{HOMOT}$. Due to the effect of concentration of isovariant absolute extensors $\mathrm{ISOV}_\mathfrak F$-$\mathrm{AE}$ we calculate in explicit form the algebra of equivariant cohomologies of an $\mathfrak F$-classifying $G$-spaces for finite families of orbit types $\mathfrak F\subset\mathrm{Conj}_G$ in the case of actions of $k$-dimensional torus $G=T^k$.
Keywords:
equivariant cohomologies, classifying $G$-spaces, isovariant absolute extensor, universal Palais $G$-space.
Received: 07.07.2013
Citation:
I. V. Usimov, “Algebras of the equivariant cohomologies of an $\mathfrak F$-classifying $T^k$-spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 1, 60–70; Russian Math. (Iz. VUZ), 59:1 (2015), 51–59
Linking options:
https://www.mathnet.ru/eng/ivm8965 https://www.mathnet.ru/eng/ivm/y2015/i1/p60
|
Statistics & downloads: |
Abstract page: | 174 | Full-text PDF : | 58 | References: | 42 | First page: | 7 |
|