Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2015, Number 1, Pages 14–28 (Mi ivm8962)  

This article is cited in 1 scientific paper (total in 1 paper)

Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications

A. A. Gorshkov, M. I. Sumin

Chair of Function Theory, Nizhni Novgorod State University, 23 Gagarin Ave., Nizhni Novgorod, 603950 Russia
Full-text PDF (271 kB) Citations (1)
References:
Abstract: We consider the convex programming problem in a reflexive space with operator equality constraint and finite number of functional inequality constraints. For this problem we prove the stable with respect to the errors in the initial data Lagrange principle in sequential nondifferential form. It is shown that the sequential approach and dual regularization significantly expand a class of optimization problems that can be solved on a base of the classical design of the Lagrange function. We discuss the possibility of its applicability for solving unstable optimization problems.
Keywords: convex programming, sequential optimization, Lagrange principle, stability, duality, regularization, optimal boundary control.
Received: 26.06.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, Volume 59, Issue 1, Pages 11–23
DOI: https://doi.org/10.3103/S1066369X15010028
Bibliographic databases:
Document Type: Article
UDC: 519.85+517.97
Language: Russian
Citation: A. A. Gorshkov, M. I. Sumin, “Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 1, 14–28; Russian Math. (Iz. VUZ), 59:1 (2015), 11–23
Citation in format AMSBIB
\Bibitem{GorSum15}
\by A.~A.~Gorshkov, M.~I.~Sumin
\paper Stable Lagrange principle in sequential form for the problem of convex programming in uniformly convex space and its applications
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2015
\issue 1
\pages 14--28
\mathnet{http://mi.mathnet.ru/ivm8962}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2015
\vol 59
\issue 1
\pages 11--23
\crossref{https://doi.org/10.3103/S1066369X15010028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84920854793}
Linking options:
  • https://www.mathnet.ru/eng/ivm8962
  • https://www.mathnet.ru/eng/ivm/y2015/i1/p14
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:446
    Full-text PDF :67
    References:68
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024