Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 12, Pages 70–82 (Mi ivm8959)  

This article is cited in 11 scientific papers (total in 11 papers)

Simultaneous diagonalization of three real symmetric matrices

M. A. Novikov

Institute of System Dynamics and Control Theory, Siberian Branch of the Russian Academy of Sciences, 134 Lermontov str., Irkutsk, 664033 Russia
References:
Abstract: We formulate and prove necessary and sufficient conditions of simultaneous diagonalization of three real symmetric matrices of regular pencil to diagonal ones. The conditions are algebraic and consist, in particular, of two spectral requirements and one matrix equality. For degenerate matrix pencil we suggest an approach that allows to reduce the analysis to a regular pencil. With the use of obtained theorems we investigate a decomposition of linear gyroscopic system into subsystems of an order not higher than two and a stability of trivial solution to a system.
Keywords: matrix pencil, simultaneous diagonalization, real congruent transformation.
Received: 15.05.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 12, Pages 59–69
DOI: https://doi.org/10.3103/S1066369X1412007X
Bibliographic databases:
Document Type: Article
UDC: 512.647
Language: Russian
Citation: M. A. Novikov, “Simultaneous diagonalization of three real symmetric matrices”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 12, 70–82; Russian Math. (Iz. VUZ), 58:12 (2014), 59–69
Citation in format AMSBIB
\Bibitem{Nov14}
\by M.~A.~Novikov
\paper Simultaneous diagonalization of three real symmetric matrices
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 12
\pages 70--82
\mathnet{http://mi.mathnet.ru/ivm8959}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 12
\pages 59--69
\crossref{https://doi.org/10.3103/S1066369X1412007X}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924053274}
Linking options:
  • https://www.mathnet.ru/eng/ivm8959
  • https://www.mathnet.ru/eng/ivm/y2014/i12/p70
  • This publication is cited in the following 11 articles:
    1. A. G. Petrov, “On Forced Oscillations of a Double Mathematical Pendulum”, Mech. Solids, 59:4 (2024), 1898  crossref
    2. A. G. Petrov, V. A. Rumyantseva, “Metod normalnykh koordinat dlya issledovaniya vynuzhdennykh kolebanii dissipativnykh sistem v mekhanike i elektrotekhnike”, Prikl. mekh. tekhn. fiz., 65:5 (2024), 141–156  mathnet  crossref
    3. Arijit Sarkar, Jacquelien M.A. Scherpen, “Structure-preserving generalized balanced truncation for nonlinear port-Hamiltonian systems”, Systems & Control Letters, 174 (2023), 105501  crossref
    4. Pablo Borja, Jacquelien M. A. Scherpen, Kenji Fujimoto, “Extended Balancing of Continuous LTI Systems: A Structure-Preserving Approach”, IEEE Trans. Automat. Contr., 68:1 (2023), 257  crossref
    5. Yu. D. Selyutskiy, A. M. Formalskii, “On the Prevention of Vibrations in the Problem of the Time-Optimal Control of a System with Two Degrees of Freedom”, J. Comput. Syst. Sci. Int., 62:6 (2023), 956  crossref
    6. A. G. Petrov, “Existence of Normal Coordinates for Forced Oscillations of Linear Dissipative Systems”, Mech. Solids, 57:5 (2022), 1035  crossref
    7. Mats Gustafsson, Lukas Jelinek, Kurt Schab, Miloslav Capek, “Unified Theory of Characteristic Modes—Part II: Tracking, Losses, and FEM Evaluation”, IEEE Trans. Antennas Propagat., 70:12 (2022), 11814  crossref
    8. Petrov A.G., “Vibrational Dissipative Systems With Two Degrees of Freedom”, Dokl. Phys., 66:9 (2021), 264–268  crossref  isi  scopus
    9. O. F. Kashpur, “Conditions for the solvability of nonlinear equations systems in Euclidean spaces”, BKNUPhM, 2021, no. 1, 74  crossref
    10. N. Jiang, M. T. Chu, J. Shen, “Structure-preserving isospectral transformation for total or partial decoupling of self-adjoint quadratic pencils”, J. Sound Vibr., 449 (2019), 157–171  crossref  isi  scopus
    11. M. A. Novikov, “Znakoopredelennost i privedenie k polnym kvadratam puchka trekh form”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 18 (2016), 74–92  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:506
    Full-text PDF :219
    References:91
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025