Processing math: 100%
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 10, Pages 54–61 (Mi ivm8941)  

This article is cited in 10 scientific papers (total in 10 papers)

Theorems of existence and non-existence of conformal Killing forms

S. E. Stepanova, I. I. Tsyganokb

a Chair of Mathematics, Financial University at the Government of the Russian Federation, 49–55 Leningradskii Ave., Moscow, 125993 Russia
b Chair of Probability theory and Mathematical Statistics, Financial University at the Government of the Russian Federation, 49–55 Leningradskii Ave., Moscow, 125993 Russia
References:
Abstract: On an n-dimensional compact, orientable, connected Riemannian manifold, we consider the curvature operator acting on the space of covariant traceless symmetric 2-tensors. We prove that, if the curvature operator is negative, the manifold admits no nonzero conformal Killing p-forms for p=1,2,,n1. On the other hand, we prove that the dimension of the vector space of conformal Killing p-forms on an n-dimensional compact simply-connected conformally flat Riemannian manifold (M,g) is not zero.
Keywords: Riemannian manifold, curvature operator, conformal Killing forms, vanishing theorem, existence theorem.
Received: 30.03.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 10, Pages 46–51
DOI: https://doi.org/10.3103/S1066369X14100077
Bibliographic databases:
Document Type: Article
UDC: 514.764
Language: Russian
Citation: S. E. Stepanov, I. I. Tsyganok, “Theorems of existence and non-existence of conformal Killing forms”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 10, 54–61; Russian Math. (Iz. VUZ), 58:10 (2014), 46–51
Citation in format AMSBIB
\Bibitem{SteTsy14}
\by S.~E.~Stepanov, I.~I.~Tsyganok
\paper Theorems of existence and non-existence of conformal Killing forms
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 10
\pages 54--61
\mathnet{http://mi.mathnet.ru/ivm8941}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 10
\pages 46--51
\crossref{https://doi.org/10.3103/S1066369X14100077}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906854845}
Linking options:
  • https://www.mathnet.ru/eng/ivm8941
  • https://www.mathnet.ru/eng/ivm/y2014/i10/p54
  • This publication is cited in the following 10 articles:
    1. Mikes J., Rovenski V., Stepanov S., Tsyganok I., “Application of the Generalized Bochner Technique to the Study of Conformally Flat Riemannian Manifolds”, Mathematics, 9:9 (2021), 927  crossref  isi
    2. Rovenski V., Stepanov S., Tsyganok I., “The Sampson Laplacian on Negatively Pinched Riemannian Manifolds”, Int. Electron. J. Geom., 14:1 (2021), 91–99  crossref  mathscinet  isi  scopus
    3. Mikes J., Rovenski V., Stepanov S.E., “An Example of Lichnerowicz-Type Laplacian”, Ann. Glob. Anal. Geom., 58:1 (2020), 19–34  crossref  mathscinet  zmath  isi  scopus
    4. S. E. Stepanov, I. I. Tsyganok, “On the Tachibana numbers of closed manifolds with pinched negative sectional curvature”, Differ. Geom. Mnogoobr. Figur, 2020, no. 51, 116  crossref
    5. V. Rovenski, S. Stepanov, I. Tsyganok, “On the Betti and Tachibana numbers of compact Einstein manifolds”, Mathematics, 7:12 (2019), 1210  crossref  isi  scopus
    6. I. G. Shandra, S. E. Stepanov, J. Mikes, “On higher-order codazzi tensors on complete Riemannian manifolds”, Ann. Glob. Anal. Geom., 56:3 (2019), 429–442  crossref  mathscinet  zmath  isi  scopus
    7. N. O. Vesic, “Generalized Weyl conformal curvature tensor of generalized Riemannian space”, Miskolc Math. Notes, 20:1 (2019), 555–563  crossref  mathscinet  zmath  isi  scopus
    8. S. Stepanov, I. Tsyganok, “Conformal Killing $L^2$-forms on complete Riemannian manifolds with nonpositive curvature operator”, J. Math. Anal. Appl., 458:1 (2018), 1–8  crossref  mathscinet  zmath  isi  scopus
    9. S. E. Stepanov, J. Mikeš, “The Hodge–de Rham Laplacian and Tachibana operator on a compact Riemannian manifold with curvature operator of definite sign”, Izv. Math., 79:2 (2015), 375–387  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. Stepanov S.E., Tsyganok I.I., Mikes J., “Overview and Comparative Analysis of the Properties of the Hodge-de Rham and Tachibana Operators”, Filomat, 29:10 (2015), 2429–2436  crossref  mathscinet  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:489
    Full-text PDF :135
    References:98
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025