Abstract:
We prove that for an almost contact metric hypersurface of a six-dimensional Kählerian submanifold of Cayley algebra the condition for the type number to be equal to 0 or 1 is not only necessary but sufficient for this almost contact metric structure to be cosymplectic.
Keywords:
almost contact metric structure, cosymplectic structure, type number, hypersurface, six-dimensional Kählerian submanifold of Cayley algebra.
Citation:
M. B. Banaru, “On almost contact metric hypersurfaces with type number 1 in 66-dimensional Kählerian submanifolds of Cayley algebra”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 10, 13–18; Russian Math. (Iz. VUZ), 58:10 (2014), 10–14
\Bibitem{Ban14}
\by M.~B.~Banaru
\paper On almost contact metric hypersurfaces with type number~1 in $6$-dimensional K\"ahlerian submanifolds of Cayley algebra
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 10
\pages 13--18
\mathnet{http://mi.mathnet.ru/ivm8936}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 10
\pages 10--14
\crossref{https://doi.org/10.3103/S1066369X14100028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84906861881}
Linking options:
https://www.mathnet.ru/eng/ivm8936
https://www.mathnet.ru/eng/ivm/y2014/i10/p13
This publication is cited in the following 2 articles:
M. B. Banaru, “On the Six-Dimensional Sphere with a Nearly Kählerian Structure”, Journal of Mathematical Sciences, 245:5 (2020), 553–567
M. B. Banaru, “On almost contact metric hypersurfaces with type number $1$ or $0$ in $6$-dimensional Hermitian submanifolds of the Cayley algebra”, Siberian Math. J., 58:4 (2017), 559–563