Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 8, Pages 42–52 (Mi ivm8917)  

This article is cited in 9 scientific papers (total in 9 papers)

Almost contact Kählerian manifolds of constant holomorphic sectional curvature

S. V. Galaev

Chair of Geometry, Saratov State University, 83 Astrakhanskaya str., Saratov, 410012 Russia
Full-text PDF (213 kB) Citations (9)
References:
Abstract: The notion of an almost contact Kählerian structure is introduced. The holomorphic sectional curvature of a distribution of an almost contact Kählerian structure with respect to an interior metric connection is defined. The relation between the φ-sectional curvature of an almost contact Kählerian manifold and the holomorphic sectional curvature of a distribution of an almost contact Kählerian structure is found.
Keywords: interior connection, extended connection, almost contact Kählerian space, φ-sectional curvature of an almost contact Kählerian space, holomorphic sectional curvature of a distribution of an almost contact Kählerian structure.
Received: 23.01.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 8, Pages 35–42
DOI: https://doi.org/10.3103/S1066369X14080040
Bibliographic databases:
Document Type: Article
UDC: 514.764
Language: Russian
Citation: S. V. Galaev, “Almost contact Kählerian manifolds of constant holomorphic sectional curvature”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 42–52; Russian Math. (Iz. VUZ), 58:8 (2014), 35–42
Citation in format AMSBIB
\Bibitem{Gal14}
\by S.~V.~Galaev
\paper Almost contact K\"ahlerian manifolds of constant holomorphic sectional curvature
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 8
\pages 42--52
\mathnet{http://mi.mathnet.ru/ivm8917}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 8
\pages 35--42
\crossref{https://doi.org/10.3103/S1066369X14080040}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904618029}
Linking options:
  • https://www.mathnet.ru/eng/ivm8917
  • https://www.mathnet.ru/eng/ivm/y2014/i8/p42
  • This publication is cited in the following 9 articles:
    1. S. V. Galaev, “Geometriya pochti 3-kvazi-sasakievykh mnogoobrazii vtorogo roda”, Materialy Mezhdunarodnoi konferentsii  «Klassicheskaya i sovremennaya geometriya»,  posvyaschennoi 100-letiyu so dnya rozhdeniya  professora Levona Sergeevicha Atanasyana  (15 iyulya 1921 g.—5 iyulya 1998 g.). Moskva, 1–4 noyabrya 2021 g. Chast 3, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 222, VINITI RAN, M., 2023, 3–9  mathnet  crossref
    2. S.V. Galaev, “Prolonged almost quazi-Sasakian structures”, Differ. Geom. Mnogoobr. Figur, 2021, no. 52, 63  crossref
    3. S. V. Galaev, “Admissible hyper-complex pseudo-Hermitian structures”, Lobachevskii J. Math., 39:1, SI (2018), 71–76  crossref  mathscinet  zmath  isi  scopus
    4. S. V. Galaev, “N-extended symplectic connections in almost contact metric spaces”, Russian Math. (Iz. VUZ), 61:3 (2017), 12–19  mathnet  crossref  isi
    5. S. V. Galaev, “O raspredeleniyakh so spetsialnoi kvazi-sasakievoi strukturoi”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2017, no. 2(39), 6–17  mathnet  crossref
    6. S. V. Galaev, “Dopustimye giperkompleksnye struktury na raspredeleniyakh sasakievykh mnogoobrazii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 16:3 (2016), 263–272  mathnet  crossref  mathscinet  elib
    7. S. V. Galaev, “Obobschennyi tenzor krivizny Vagnera pochti kontaktnykh metricheskikh prostranstv”, Chebyshevskii sb., 17:3 (2016), 53–63  mathnet  elib
    8. S. V. Galaev, Yu. V. Shevtsova, “Pochti kontaktnye metricheskie struktury, opredelyaemye simplekticheskoi svyaznostyu nad raspredeleniem”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 15:2 (2015), 136–141  mathnet  crossref  elib
    9. S. V. Galaev, “Pochti kontaktnye metricheskie prostranstva s N-svyaznostyu”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 15:3 (2015), 258–264  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :79
    References:64
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025