|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 8, Pages 3–17
(Mi ivm8914)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
$I_0^*$-modules
A. N. Abyzov Chair of Algebra and Mathematical Logics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Abstract:
We study rings over which every module is an $I_0^*$-module dual to $I_0$-module. We describe semiregular rings over which every module is simultaneously $I_0^*$-module and $I_0$-module. We give a description of rings over which every module is a direct sum of injective module and $SV$-module. We investigate relations between weakly Baer modules and $I_0^*$-modules.
Keywords:
semi-artinian rings, $SV$-rings, $I_0$-modules, $I_0^*$-modules, weakly Baer modules.
Received: 04.02.2013
Citation:
A. N. Abyzov, “$I_0^*$-modules”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 3–17; Russian Math. (Iz. VUZ), 58:8 (2014), 1–14
Linking options:
https://www.mathnet.ru/eng/ivm8914 https://www.mathnet.ru/eng/ivm/y2014/i8/p3
|
Statistics & downloads: |
Abstract page: | 300 | Full-text PDF : | 79 | References: | 80 | First page: | 17 |
|