Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 8, Pages 3–17 (Mi ivm8914)  

This article is cited in 1 scientific paper (total in 1 paper)

$I_0^*$-modules

A. N. Abyzov

Chair of Algebra and Mathematical Logics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Full-text PDF (259 kB) Citations (1)
References:
Abstract: We study rings over which every module is an $I_0^*$-module dual to $I_0$-module. We describe semiregular rings over which every module is simultaneously $I_0^*$-module and $I_0$-module. We give a description of rings over which every module is a direct sum of injective module and $SV$-module. We investigate relations between weakly Baer modules and $I_0^*$-modules.
Keywords: semi-artinian rings, $SV$-rings, $I_0$-modules, $I_0^*$-modules, weakly Baer modules.
Received: 04.02.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 8, Pages 1–14
DOI: https://doi.org/10.3103/S1066369X14080015
Bibliographic databases:
Document Type: Article
UDC: 512.553
Language: Russian
Citation: A. N. Abyzov, “$I_0^*$-modules”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8, 3–17; Russian Math. (Iz. VUZ), 58:8 (2014), 1–14
Citation in format AMSBIB
\Bibitem{Aby14}
\by A.~N.~Abyzov
\paper $I_0^*$-modules
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 8
\pages 3--17
\mathnet{http://mi.mathnet.ru/ivm8914}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 8
\pages 1--14
\crossref{https://doi.org/10.3103/S1066369X14080015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84904609502}
Linking options:
  • https://www.mathnet.ru/eng/ivm8914
  • https://www.mathnet.ru/eng/ivm/y2014/i8/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:300
    Full-text PDF :79
    References:80
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024