Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 7, Pages 30–48 (Mi ivm8909)  

This article is cited in 6 scientific papers (total in 6 papers)

On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes

S. B. Vakarchuka, M. Sh. Shabozovb, M. R. Langarshoevb

a Chair of Information Science and Mathematical Methods in Economics, Alfred Nobel University, 18 Naberezhnaya Lenina str., Dnepropetrovsk, 49000 Ukraine
b Institute of Mathematics, Academy of Sciences, Republic Tajikistan, 299/1 Aini str., Dushanbe, 734063 Republic of Tajikistan
Full-text PDF (273 kB) Citations (6)
References:
Abstract: We consider some extremal problems of approximation theory of functions at the whole real axis $\mathbb R$ by entire functions of the exponential type. In particular, we find the exact values of the mean $\nu$-widths of classes of functions, defined by the moduli of continuity of $m$th order $\omega_m$ and majorants $\Psi$ satisfying the special type of restriction.
Keywords: best approximation, entire function of exponential type, modulus of continuity, mean $\nu$-width, majorant.
Received: 18.01.2013
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 7, Pages 25–41
DOI: https://doi.org/10.3103/S1066369X14070032
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: S. B. Vakarchuk, M. Sh. Shabozov, M. R. Langarshoev, “On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 7, 30–48; Russian Math. (Iz. VUZ), 58:7 (2014), 25–41
Citation in format AMSBIB
\Bibitem{VakShaLan14}
\by S.~B.~Vakarchuk, M.~Sh.~Shabozov, M.~R.~Langarshoev
\paper On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 7
\pages 30--48
\mathnet{http://mi.mathnet.ru/ivm8909}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 7
\pages 25--41
\crossref{https://doi.org/10.3103/S1066369X14070032}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84903692287}
Linking options:
  • https://www.mathnet.ru/eng/ivm8909
  • https://www.mathnet.ru/eng/ivm/y2014/i7/p30
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :107
    References:79
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024