|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 7, Pages 30–48
(Mi ivm8909)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes
S. B. Vakarchuka, M. Sh. Shabozovb, M. R. Langarshoevb a Chair of Information Science and Mathematical Methods in Economics, Alfred Nobel University, 18 Naberezhnaya Lenina str., Dnepropetrovsk, 49000 Ukraine
b Institute of Mathematics, Academy of Sciences, Republic Tajikistan,
299/1 Aini str., Dushanbe, 734063 Republic of Tajikistan
Abstract:
We consider some extremal problems of approximation theory of functions at the whole real axis $\mathbb R$ by entire functions of the exponential type. In particular, we find the exact values of the mean $\nu$-widths of classes of functions, defined by the moduli of continuity of $m$th order $\omega_m$ and majorants $\Psi$ satisfying the special type of restriction.
Keywords:
best approximation, entire function of exponential type, modulus of continuity, mean $\nu$-width, majorant.
Received: 18.01.2013
Citation:
S. B. Vakarchuk, M. Sh. Shabozov, M. R. Langarshoev, “On the best mean square approximations by entire functions of exponential type in $L_2(\mathbb R)$ and mean $\nu$-widths of some functional classes”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 7, 30–48; Russian Math. (Iz. VUZ), 58:7 (2014), 25–41
Linking options:
https://www.mathnet.ru/eng/ivm8909 https://www.mathnet.ru/eng/ivm/y2014/i7/p30
|
Statistics & downloads: |
Abstract page: | 375 | Full-text PDF : | 107 | References: | 79 | First page: | 15 |
|