Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 6, Pages 3–8 (Mi ivm8899)  

On a set of ambiguous points of a functions in the $\mathbb R^n$

E. G. Ganenkova

Chair of Mathematical Analysis, Petrozavodsk State University, 33 Lenin Ave., Petrozavodsk, 185910 Russia
References:
Abstract: It is known that an arbitrary function in the open unit disk can have at most countable set of ambiguous points. Point $\zeta$ on the unit circle is an ambiguous point of a function if there exist two Jordan arcs, lying in the unit ball, except the endpoint $\zeta,$ such that cluster sets of function along these arcs are disjoint. We investigate whether it is possible to modify the notion of ambiguous point to keep the analogous result true for functions defined in the $n$-dimensional Euclidean unit ball.
Keywords: cluster set, ambiguous point.
Received: 30.11.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 6, Pages 1–5
DOI: https://doi.org/10.3103/S1066369X14060012
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: E. G. Ganenkova, “On a set of ambiguous points of a functions in the $\mathbb R^n$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 6, 3–8; Russian Math. (Iz. VUZ), 58:6 (2014), 1–5
Citation in format AMSBIB
\Bibitem{Kom14}
\by E.~G.~Ganenkova
\paper On a set of ambiguous points of a~functions in the~$\mathbb R^n$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 6
\pages 3--8
\mathnet{http://mi.mathnet.ru/ivm8899}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 6
\pages 1--5
\crossref{https://doi.org/10.3103/S1066369X14060012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84900840770}
Linking options:
  • https://www.mathnet.ru/eng/ivm8899
  • https://www.mathnet.ru/eng/ivm/y2014/i6/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:192
    Full-text PDF :45
    References:48
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024