Abstract:
We establish nonlocal existence theorem for the weak solution for an initial-boundary value problem for the dynamic model of thermoviscoelasticity of Oldroid type in the planar case.
Citation:
V. P. Orlov, M. I. Parshin, “On one problem of dynamics of thermoviscoelastic medium of Oldroid type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 68–74; Russian Math. (Iz. VUZ), 58:5 (2014), 57–62
\Bibitem{OrlPar14}
\by V.~P.~Orlov, M.~I.~Parshin
\paper On one problem of dynamics of thermoviscoelastic medium of Oldroid type
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 5
\pages 68--74
\mathnet{http://mi.mathnet.ru/ivm8897}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 5
\pages 57--62
\crossref{https://doi.org/10.3103/S1066369X14050089}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899788940}
Linking options:
https://www.mathnet.ru/eng/ivm8897
https://www.mathnet.ru/eng/ivm/y2014/i5/p68
This publication is cited in the following 5 articles:
V. G. Zvyagin, V. P. Orlov, “Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory”, Russian Math. (Iz. VUZ), 65:6 (2021), 84–89
V. G. Zvyagin, V. P. Orlov, “On a model of thermoviscoelasticity of Jeffreys–Oldroyd type”, Comput. Math. Math. Phys., 56:10 (2016), 1803–1812
A. V. Zvyagin, V. P. Orlov, “Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid”, Math. Notes, 97:5 (2015), 694–708
A. V. Zvyagin, V. P. Orlov, “Solvability of thermoviscoelastic problem for one Oskolkov's model”, Russian Math. (Iz. VUZ), 58:9 (2014), 57–61
V. P. Orlov, M. I. Parshin, “O silnykh resheniyakh odnoi modeli termovyazkouprugosti tipa Oldroida”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 7:3 (2014), 69–76