Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 5, Pages 38–52 (Mi ivm8893)  

This article is cited in 5 scientific papers (total in 5 papers)

Upper bounds on the formula size of symmetric Boolean functions

I. S. Sergeev

Chair of Discrete Mathematics, Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991 Russia
Full-text PDF (362 kB) Citations (5)
References:
Abstract: It is proved that complexity of implementation of the counting function of $n$ Boolean variables with binary formulae is at most $n^{3.03}$ and is at most $n^{4.47}$ with respect to DeMorgan formulae. Hence, the same bounds hold for the formula size of any threshold symmetric function of $n$ variables, particularly, for majority function. The following bounds are proved for the formula size of any symmetric Boolean function of $n$ variables: $n^{3.04}$ with respect to binary formulae and $n^{4.48}$ with respect to DeMorgan formulae. A proof is based on modular arithmetic.
Keywords: formula size, symmetric Boolean functions, majority function, multiplication.
Received: 07.11.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 5, Pages 30–42
DOI: https://doi.org/10.3103/S1066369X14050041
Bibliographic databases:
Document Type: Article
UDC: 519.714
Language: Russian
Citation: I. S. Sergeev, “Upper bounds on the formula size of symmetric Boolean functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 38–52; Russian Math. (Iz. VUZ), 58:5 (2014), 30–42
Citation in format AMSBIB
\Bibitem{Ser14}
\by I.~S.~Sergeev
\paper Upper bounds on the formula size of symmetric Boolean functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 5
\pages 38--52
\mathnet{http://mi.mathnet.ru/ivm8893}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 5
\pages 30--42
\crossref{https://doi.org/10.3103/S1066369X14050041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899878882}
Linking options:
  • https://www.mathnet.ru/eng/ivm8893
  • https://www.mathnet.ru/eng/ivm/y2014/i5/p38
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:250
    Full-text PDF :71
    References:53
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024