|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 5, Pages 3–11
(Mi ivm8890)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On boundary points of arbitrary harmonic functions
S. L. Berberyan Chair of Mathematics and Mathematical Modeling, Russian-Armenian (Slavonic) University, 123 Ovsep Emin str., Yerevan, 0051 Republic of Armenia
Abstract:
The article deals with the Lindelöf and Fatou points of arbitrary harmonic functions defined on the until circle. We present the necessary and sufficient conditions for the existence of such points on the unit circle.
Keywords:
harmonic functions, Lindelöf points, Fatou points, non-Euclidean circles, normal functions, $P$-sequence, $P'$-sequence.
Received: 06.11.2012
Citation:
S. L. Berberyan, “On boundary points of arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 3–11; Russian Math. (Iz. VUZ), 58:5 (2014), 1–7
Linking options:
https://www.mathnet.ru/eng/ivm8890 https://www.mathnet.ru/eng/ivm/y2014/i5/p3
|
|