Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 5, Pages 3–11 (Mi ivm8890)  

This article is cited in 1 scientific paper (total in 1 paper)

On boundary points of arbitrary harmonic functions

S. L. Berberyan

Chair of Mathematics and Mathematical Modeling, Russian-Armenian (Slavonic) University, 123 Ovsep Emin str., Yerevan, 0051 Republic of Armenia
Full-text PDF (206 kB) Citations (1)
References:
Abstract: The article deals with the Lindelöf and Fatou points of arbitrary harmonic functions defined on the until circle. We present the necessary and sufficient conditions for the existence of such points on the unit circle.
Keywords: harmonic functions, Lindelöf points, Fatou points, non-Euclidean circles, normal functions, $P$-sequence, $P'$-sequence.
Received: 06.11.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 5, Pages 1–7
DOI: https://doi.org/10.3103/S1066369X14050016
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: Russian
Citation: S. L. Berberyan, “On boundary points of arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5, 3–11; Russian Math. (Iz. VUZ), 58:5 (2014), 1–7
Citation in format AMSBIB
\Bibitem{Ber14}
\by S.~L.~Berberyan
\paper On boundary points of arbitrary harmonic functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 5
\pages 3--11
\mathnet{http://mi.mathnet.ru/ivm8890}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 5
\pages 1--7
\crossref{https://doi.org/10.3103/S1066369X14050016}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899837481}
Linking options:
  • https://www.mathnet.ru/eng/ivm8890
  • https://www.mathnet.ru/eng/ivm/y2014/i5/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024