Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 3, Pages 40–56 (Mi ivm8879)  

This article is cited in 14 scientific papers (total in 14 papers)

On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges

S. N. Timergaliev

Chair of Mathematics, Naberezhnye Chelny Institute (Branch), Kazan (Volga Region) Federal University, 68/19 Mira Ave., Naberezhnye Chelny, 423810 Russia
References:
Abstract: We study the geometrically nonlinear physically linear boundary-value problems solvability for shallow isotropic elastic shells within the framework of S. P. Timoshenko shift model. The method of study consists in reducing of the equilibrium equations reference system to one nonlinear differential equation relative to deflection. In this case the significant role is played by integral representations for the tangential shifts and the angle of rotations, which are reduced with the attraction of the general solutions of the inhomogeneous Cauchy–Riemann equation. The solvability of equation relative to deflection is established with the use of of principle of contraction mappings.
Keywords: Timoshenko type shell, equilibrium equations system, boundary problem, generalized shifts, generalized problem solution, integral images, Sobolev spaces, operator, integral equations, holomorphic functions, existence theorem.
Received: 30.09.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 3, Pages 31–46
DOI: https://doi.org/10.3103/S1066369X14030049
Bibliographic databases:
Document Type: Article
UDC: 517.958+539.3
Language: Russian
Citation: S. N. Timergaliev, “On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 3, 40–56; Russian Math. (Iz. VUZ), 58:3 (2014), 31–46
Citation in format AMSBIB
\Bibitem{Tim14}
\by S.~N.~Timergaliev
\paper On existence of solutions to geometrically nonlinear problems for shallow shells of the Timoshenko type with free edges
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 3
\pages 40--56
\mathnet{http://mi.mathnet.ru/ivm8879}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 3
\pages 31--46
\crossref{https://doi.org/10.3103/S1066369X14030049}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898997280}
Linking options:
  • https://www.mathnet.ru/eng/ivm8879
  • https://www.mathnet.ru/eng/ivm/y2014/i3/p40
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:303
    Full-text PDF :62
    References:59
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024