Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 3, Pages 3–18 (Mi ivm8876)  

This article is cited in 30 scientific papers (total in 30 papers)

Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph

A. S. Volkova, V. V. Provotorov

Chair of Partial Differential Equations and Probability Theory, Voronezh State University, 1 Universitetskaya sq., Voronezh, 394006 Russia
References:
Abstract: We consider generalized solutions to boundary-value problems for elliptic equations on an arbitrary geometric graph and their corresponding eigenfunctions. We construct analogs of Sobolev spaces that are dense in $L_2$. We obtain conditions for the Fredholm solvability of boundary-value problems of different types, describe their spectral properties and conditions of the decomposition of generalized eigenfunctions. The results presented here are fundamental in the study of boundary control problems of oscillations of multiplex jointed structures, consisting of strings or rods, as well as in the study of cell metabolism.
Keywords: generalized derivative, generalized solutions, generalized eigenfunctions.
Received: 21.10.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 3, Pages 1–13
DOI: https://doi.org/10.3103/S1066369X14030013
Bibliographic databases:
Document Type: Article
UDC: 517.954
Language: Russian
Citation: A. S. Volkova, V. V. Provotorov, “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 3, 3–18; Russian Math. (Iz. VUZ), 58:3 (2014), 1–13
Citation in format AMSBIB
\Bibitem{VolPro14}
\by A.~S.~Volkova, V.~V.~Provotorov
\paper Generalized solutions and generalized eigenfunctions of boundary-value problems on a~geometric graph
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 3
\pages 3--18
\mathnet{http://mi.mathnet.ru/ivm8876}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 3
\pages 1--13
\crossref{https://doi.org/10.3103/S1066369X14030013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898947737}
Linking options:
  • https://www.mathnet.ru/eng/ivm8876
  • https://www.mathnet.ru/eng/ivm/y2014/i3/p3
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:514
    Full-text PDF :164
    References:74
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024