Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 1, Pages 71–81 (Mi ivm8864)  

This article is cited in 4 scientific papers (total in 4 papers)

Linear equations of the Sobolev type with integral delay operator

V. E. Fedorova, E. A. Omel'chenkob

a Chair of Mathematical Analysis, Chelyabinsk State University, 129 Br. Kashirinykh str., Chelyabinsk, 454001 Russia
b Chair of Humanities and Socio-Economic Disciplines, Ural Branch of the Russian Academy of Justice, 160 Pobedy Ave., Chelyabinsk, 454084 Russia
Full-text PDF (237 kB) Citations (4)
References:
Abstract: We establish sufficient conditions for the local and global solvability of initial problems for a class of linear operator-differential equations of the first order in a Banach space. Equations are assumed to have a degenerate operator at the derivative and an integral delay operator. We apply methods of the theory of degenerate semigroups of operators and the contraction mapping theorem. As examples illustrating the general results we consider the evolution equation for a free surface of a filtered liquid with a delay and a linearized quasistationary system of equations for a phase field with a delay.
Keywords: delay equation, Sobolev-type equation, integrodifferential equation, contraction mapping theorem, degenerate semigroup of operators.
Received: 23.08.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 1, Pages 60–69
DOI: https://doi.org/10.3103/S1066369X14010071
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: V. E. Fedorov, E. A. Omel'chenko, “Linear equations of the Sobolev type with integral delay operator”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1, 71–81; Russian Math. (Iz. VUZ), 58:1 (2014), 60–69
Citation in format AMSBIB
\Bibitem{FedOme14}
\by V.~E.~Fedorov, E.~A.~Omel'chenko
\paper Linear equations of the Sobolev type with integral delay operator
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 1
\pages 71--81
\mathnet{http://mi.mathnet.ru/ivm8864}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 1
\pages 60--69
\crossref{https://doi.org/10.3103/S1066369X14010071}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892503220}
Linking options:
  • https://www.mathnet.ru/eng/ivm8864
  • https://www.mathnet.ru/eng/ivm/y2014/i1/p71
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025