Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2014, Number 1, Pages 3–16 (Mi ivm8858)  

Estimates for some convolution operators with singularities in their kernels on a sphere and their applications

A. V. Gila, V. A. Noginab

a Chair of Differential and Integral Equations, Southern Federal University, 8a Mil'chakov str., Rostov-on-Don, 344090 Russia
b Southern Mathematical Institute of VSC RAS, 22 Markus str., Vladikavkaz, 362027 Russia
References:
Abstract: We study convolution operators, whose kernels have singularities on the unit sphere. For these operators we obtain $H^p$-$H^q$ estimates, where $p$ is less than or equals $q$, and prove their sharpness. To this end, we develop a new method that uses special representations for the symbol of such an operator as the sum of some oscillatory integrals and applies the stationary phase method and A. Miyachi results for model oscillating multipliers. Moreover, we also obtain estimates from $L^p$ to $BMO$ and those from $BMO$ to $BMO$.
Keywords: estimates, convolution, oscillating symbol, multiplier.
Received: 17.08.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, Volume 58, Issue 1, Pages 1–13
DOI: https://doi.org/10.3103/S1066369X14010010
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: A. V. Gil, V. A. Nogin, “Estimates for some convolution operators with singularities in their kernels on a sphere and their applications”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 1, 3–16; Russian Math. (Iz. VUZ), 58:1 (2014), 1–13
Citation in format AMSBIB
\Bibitem{GilNog14}
\by A.~V.~Gil, V.~A.~Nogin
\paper Estimates for some convolution operators with singularities in their kernels on a~sphere and their applications
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2014
\issue 1
\pages 3--16
\mathnet{http://mi.mathnet.ru/ivm8858}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2014
\vol 58
\issue 1
\pages 1--13
\crossref{https://doi.org/10.3103/S1066369X14010010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892489733}
Linking options:
  • https://www.mathnet.ru/eng/ivm8858
  • https://www.mathnet.ru/eng/ivm/y2014/i1/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:232
    Full-text PDF :59
    References:44
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025