Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2013, Number 7, Pages 31–44 (Mi ivm8808)  

An affine interpretation of Bäcklund maps

A. K. Rybnikov

Chair of Mathematical Analysis, Moscow State University, GSP-1 Leninskie Gory, Moscow, 119991 Russia
References:
Abstract: We consider an affine interpretation of Bäcklund maps for second-order differential equations with an unknown function of two arguments. (Note that Bäcklund transformations represent a special case of Bäcklund maps.) Until now, no one has interpreted Bäcklund transformations as transformations of surfaces in a space different from the Euclidean one. In this paper we consider only the so-called Bäcklund maps of class 1. We represent solutions of differential equations as surfaces in an affine space with an induced connection defining a representation of zero curvature.
We prove that if a second-order differential equation admits a Bäcklund map of class 1, then for every solution of this equation there exists a congruence of straight lines in an affine space generated by tangents to the affine image of the solution. This congruence is an affine analog of the parabolic congruence in a Euclidean space. One can interpret a Bäcklund map as a transformation of surfaces in the affine space such that the affine image of the solution of the given differential equation is mapped to a certain boundary surface of the congruence.
Keywords: Bäcklund transformations, Bäcklund maps, connection in principal fiber manifold, connection in associated fiber manifold, connections defining representations of zero curvature.
Received: 18.04.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, Volume 57, Issue 7, Pages 27–38
DOI: https://doi.org/10.3103/S1066369X13070037
Bibliographic databases:
Document Type: Article
UDC: 514.7+517.9
Language: Russian
Citation: A. K. Rybnikov, “An affine interpretation of Bäcklund maps”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 7, 31–44; Russian Math. (Iz. VUZ), 57:7 (2013), 27–38
Citation in format AMSBIB
\Bibitem{Ryb13}
\by A.~K.~Rybnikov
\paper An affine interpretation of B\"acklund maps
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2013
\issue 7
\pages 31--44
\mathnet{http://mi.mathnet.ru/ivm8808}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2013
\vol 57
\issue 7
\pages 27--38
\crossref{https://doi.org/10.3103/S1066369X13070037}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879771783}
Linking options:
  • https://www.mathnet.ru/eng/ivm8808
  • https://www.mathnet.ru/eng/ivm/y2013/i7/p31
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024