Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2013, Number 3, Pages 33–39 (Mi ivm8780)  

This article is cited in 1 scientific paper (total in 1 paper)

Semirings satisfying the Baer criterion

S. N. Il'in

Chair of Algebra and Mathematical Logics, Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (177 kB) Citations (1)
References:
Abstract: It is well-known that for modules over rings the Baer injectivity criterion takes place. In this paper we prove that under one additional condition this criterion is also valid for modules over semirings. We prove that a semiring $S$ satisfies the Baer criterion if and only if all injective (with respect to one-sided ideals of $S$) semimodules satisfy the above condition. We propose a new method for constructing semirings satisfying the Baer criterion.
Keywords: semiring, injective semimodule, Baer criterion.
Received: 30.01.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, Volume 57, Issue 3, Pages 26–31
DOI: https://doi.org/10.3103/S1066369X13030031
Bibliographic databases:
Document Type: Article
UDC: 512.558
Language: Russian
Citation: S. N. Il'in, “Semirings satisfying the Baer criterion”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 3, 33–39; Russian Math. (Iz. VUZ), 57:3 (2013), 26–31
Citation in format AMSBIB
\Bibitem{Ili13}
\by S.~N.~Il'in
\paper Semirings satisfying the Baer criterion
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2013
\issue 3
\pages 33--39
\mathnet{http://mi.mathnet.ru/ivm8780}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2013
\vol 57
\issue 3
\pages 26--31
\crossref{https://doi.org/10.3103/S1066369X13030031}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84876221872}
Linking options:
  • https://www.mathnet.ru/eng/ivm8780
  • https://www.mathnet.ru/eng/ivm/y2013/i3/p33
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:229
    Full-text PDF :71
    References:56
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024