Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 11, Pages 72–78 (Mi ivm8753)  

This article is cited in 2 scientific papers (total in 2 papers)

Brief communications

A $(3,3)$-homogeneous quantum logic with $18$ atoms. I

F. F. Sultanbekov

Chair of Mathematical Analysis, Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (203 kB) Citations (2)
References:
Abstract: A quantum logic is called $(m,n)$-homogeneous if any its atom is contained exactly in $m$ maximal (with respect to inclusion) orthogonal sets of atoms (we call them blocks), and every block contains exactly $n$ elements. We enumerate atoms by natural numbers. For each block $\{i,j,k\}$ we use the abbreviation $i$-$j$-$k$. Every such logic has the following $7$ initial blocks $B_1,\dots,B_7$: $1$-$2$-$3$, $1$-$4$-$5$, $1$-$6$-$7$, $2$-$8$-$9$, $2$-$10$-$11$, $3$-$12$-$13$, and $3$-$14$-$15$. For an $18$-atom logic the arrangements of the rest atoms $16,17$, and $18$ is important. We consider the case when they form a loop of order $4$ in one of layers composed of initial blocks, for example, $l_4$: $3$-$14$-$15$, $15$-$16$-$17$, $17$-$18$-$13$, and $13$-$12$-$3$. We prove that there exist (up to isomorphism) only $5$ such logics, and describe pure states and automorphism groups for them.
Keywords: quantum logic, homogeneous quantum logic, $(3,3)$-homogeneous logic, atom, block, pure state, automorphism group.
Presented by the member of Editorial Board: D. Kh. Mushtari
Received: 22.05.2012
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 11, Pages 62–66
DOI: https://doi.org/10.3103/S1066369X12110072
Bibliographic databases:
Document Type: Article
UDC: 512
Language: Russian
Citation: F. F. Sultanbekov, “A $(3,3)$-homogeneous quantum logic with $18$ atoms. I”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 11, 72–78; Russian Math. (Iz. VUZ), 56:11 (2012), 62–66
Citation in format AMSBIB
\Bibitem{Sul12}
\by F.~F.~Sultanbekov
\paper A $(3,3)$-homogeneous quantum logic with~$18$ atoms.~I
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 11
\pages 72--78
\mathnet{http://mi.mathnet.ru/ivm8753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137104}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 11
\pages 62--66
\crossref{https://doi.org/10.3103/S1066369X12110072}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84869432251}
Linking options:
  • https://www.mathnet.ru/eng/ivm8753
  • https://www.mathnet.ru/eng/ivm/y2012/i11/p72
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:163
    Full-text PDF :59
    References:29
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024