Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 5, Pages 67–71 (Mi ivm8705)  

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

The unique solvability of one class of multiplicative convolution equations

L. G. Salekhova, L. L. Salekhovab

a Chair of Differential Equations, Kazan (Volga Region) Federal University, Kazan, Russia
b Chair of Mathematical Linguistics anf Informational Systems in Philology, Kazan (Volga Region) Federal University, Kazan, Russia
Full-text PDF (158 kB) Citations (1)
References:
Abstract: In the space of tempered distributions we consider a certain equations on the real axis with operations of convolution and multiplication. It contains convolution equations, in particular, ordinary differential equations with constant coefficients, finite-difference equations, functional differential equations with constant coefficients and shifts, as well as pair differential equations. Owing to the possibility of the analytical representation of distributions (the Cauchy or Hilberts transform), the considered class of equations is equivalent to a certain class of boundary value problems of the Riemann type, where equations play the role of boundary conditions in the sense of tempered distributions. As the research technique we use the Fourier transform, the generalized Fourier transform (the Carleman–Fourier transform), as well as the theory of convolution equations in the space of distributions.
Keywords: convolution equation, convolution algebra and moduli, Fourier transform, Carleman–Fourier transform, analytical representation of distributions, tempered distributions, space of convolutors for the space of tempered distributions.
Presented by the member of Editorial Board: S. G. Samko
Received: 17.05.2011
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 5, Pages 57–60
DOI: https://doi.org/10.3103/S1066369X12050076
Bibliographic databases:
Document Type: Article
UDC: 517.982
Language: Russian
Citation: L. G. Salekhov, L. L. Salekhova, “The unique solvability of one class of multiplicative convolution equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 5, 67–71; Russian Math. (Iz. VUZ), 56:5 (2012), 57–60
Citation in format AMSBIB
\Bibitem{SalSal12}
\by L.~G.~Salekhov, L.~L.~Salekhova
\paper The unique solvability of one class of multiplicative convolution equations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 5
\pages 67--71
\mathnet{http://mi.mathnet.ru/ivm8705}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076891}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 5
\pages 57--60
\crossref{https://doi.org/10.3103/S1066369X12050076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862655911}
Linking options:
  • https://www.mathnet.ru/eng/ivm8705
  • https://www.mathnet.ru/eng/ivm/y2012/i5/p67
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:366
    Full-text PDF :73
    References:53
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024