|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 5, Pages 13–27
(Mi ivm8700)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$
S. Yu. Antonov Chair of Higher Mathematics, Kazan State Power Engineering University, Kazan, Russia
Abstract:
We estimate the least power of identities of subspaces $M_1^{(m, k)}(F)$ of the matrix superalgebra $M^{(m, k)}(F)$ over the field $F$ for any $m$ and $k$. For subspaces $M_1^{(m, 1)}(F)$ $(m\geq1)$ and $M_1^{(2,2)}(F)$ we obtain concrete minimal identities.
Keywords:
$T$-ideal, polynomial identity, matrix superalgebra.
Received: 11.01.2011
Citation:
S. Yu. Antonov, “Some estimates for the least power of identities of subspaces $M_1^{(m,k)}(F)$ of the matrix superalgebra $M^{(m,k)}(F)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 5, 13–27; Russian Math. (Iz. VUZ), 56:5 (2012), 9–22
Linking options:
https://www.mathnet.ru/eng/ivm8700 https://www.mathnet.ru/eng/ivm/y2012/i5/p13
|
Statistics & downloads: |
Abstract page: | 194 | Full-text PDF : | 54 | References: | 64 | First page: | 3 |
|