Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 4, Pages 46–52 (Mi ivm8593)  

One sufficient condition for Hamiltonian graphs involving distances

Kewen Zhaoa, Lin Yuea, Zhang Pingb

a Department of Mathematics, Qiongzhou University, Hainan, P. R. China
b Department of Mathematics and Statistics, Western Michigan University, Michigan, USA
References:
Abstract: Let $G$ be a 2-connected graph of order $n$ such that $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$. Then, as was proved in 1990 by G. T. Chen, $G$ is Hamiltonian. In this paper we introduce one more condition and prove that if $G$ is a 2-connected graph of order $n$ and $2|N(x)\cup N(y)|+d(x)+d(y)\geq2n-1$ for each pair of nonadjacent vertices $x,y$ such that $d(x,y)=2$, then $G$ is Hamiltonian.
Keywords: Hamiltonian graph, Ore condition, neighborhood union condition, Chen condition, new sufficient condition.
Received: 29.10.2010
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 4, Pages 38–43
DOI: https://doi.org/10.3103/S1066369X12040056
Bibliographic databases:
Document Type: Article
UDC: 517.175
Language: Russian
Citation: Kewen Zhao, Lin Yue, Zhang Ping, “One sufficient condition for Hamiltonian graphs involving distances”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 4, 46–52; Russian Math. (Iz. VUZ), 56:4 (2012), 38–43
Citation in format AMSBIB
\Bibitem{KewLinZha12}
\by Kewen~Zhao, Lin~Yue, Zhang~Ping
\paper One sufficient condition for Hamiltonian graphs involving distances
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 4
\pages 46--52
\mathnet{http://mi.mathnet.ru/ivm8593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076540}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 4
\pages 38--43
\crossref{https://doi.org/10.3103/S1066369X12040056}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862727760}
Linking options:
  • https://www.mathnet.ru/eng/ivm8593
  • https://www.mathnet.ru/eng/ivm/y2012/i4/p46
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025