|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 4, Pages 24–32
(Mi ivm8591)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
A rearrangement formula for a singular Cauchy–Szegö integral in a ball from $\mathbb C^n$
A. S. Katsunovaa, A. M. Kytmanovb a Chair of Applied Mathematics and Computer Security, Siberian Federal University, Institute of Space and Information Technologies, Krasnoyarsk, Russia
b Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Abstract:
We obtain an analog of the Poincaré–Bertrand formula for a singular Cauchy–Szegö integral in a multidimensional ball. We understand the principal value of the integral in the Cauchy sense. The obtained formula differs from that of Poincaré–Bertrand for the Cauchy integral in a complex plane.
Keywords:
Cauchy–Szegö integral, principal value of integral in Cauchy sense, rearrangement formula for iterated integrals.
Received: 06.04.2011
Citation:
A. S. Katsunova, A. M. Kytmanov, “A rearrangement formula for a singular Cauchy–Szegö integral in a ball from $\mathbb C^n$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 4, 24–32; Russian Math. (Iz. VUZ), 56:4 (2012), 19–26
Linking options:
https://www.mathnet.ru/eng/ivm8591 https://www.mathnet.ru/eng/ivm/y2012/i4/p24
|
|