Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 3, Pages 17–23 (Mi ivm8441)  

This article is cited in 7 scientific papers (total in 7 papers)

Distribution of points of one-dimensional quasilattices with respect to a variable module

V. V. Krasil'shchikova, A. V. Shutovb

a Chair of Engineering-technological Disciplines and Service, Vladimir Branch of Russian University of Cooperation, Vladimir, Russia
b Chair of Information Science and Computer Engineering, Vladimir State University of Liberal Arts, Vladimir, Russia
Full-text PDF (186 kB) Citations (7)
References:
Abstract: We consider one-dimensional quasiperiodic Fibonacci tilings. Namely, we study sets of vertices of these tilings that represent one-dimensional quasilattices defined on the base of a parameterization by rotations of a circle, and the distribution of points of quasilattices with respect to a variable module. We show that the distribution with respect to some modules is not uniform. We describe the distribution function and its integral representation, and estimate the remainder in the problem of the distribution of points of a quasilattice for corresponding modules.
Keywords: one-dimensional quasilattice, Fibonacci tilings, distribution function.
Received: 17.03.2011
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 3, Pages 14–19
DOI: https://doi.org/10.3103/S1066369X12030036
Bibliographic databases:
Document Type: Article
UDC: 511.43
Language: Russian
Citation: V. V. Krasil'shchikov, A. V. Shutov, “Distribution of points of one-dimensional quasilattices with respect to a variable module”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 3, 17–23; Russian Math. (Iz. VUZ), 56:3 (2012), 14–19
Citation in format AMSBIB
\Bibitem{KraShu12}
\by V.~V.~Krasil'shchikov, A.~V.~Shutov
\paper Distribution of points of one-dimensional quasilattices with respect to a~variable module
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 3
\pages 17--23
\mathnet{http://mi.mathnet.ru/ivm8441}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076514}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 3
\pages 14--19
\crossref{https://doi.org/10.3103/S1066369X12030036}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862697342}
Linking options:
  • https://www.mathnet.ru/eng/ivm8441
  • https://www.mathnet.ru/eng/ivm/y2012/i3/p17
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :60
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024