Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 2, Pages 70–75 (Mi ivm8435)  

This article is cited in 43 scientific papers (total in 43 papers)

One nonlocal problem of determination of the temperature and density of heat sources

I. Orazova, M. A. Sadybekovb

a Chair of Information Science, Institute of Mathematics and Mathematical Modeling, Southern-Kazakhstan State University, Shymkent, Republic of Kazakhstan
b Institute of Mathematics, Information Science and Mechanics, Ministry of Education of Republic of Kazakhstan, Almaty, Republic of Kazakhstan
References:
Abstract: We consider one family of problems simulating the determination of the temperature and density of heat sources from given values of the initial and final temperature. The mathematical statement of these problems leads to the inverse problem for the heat equation, where it is required to find not only a solution of the problem, but also its right-hand side that depends only on a spatial variable. A specific feature of the considered problems is that the system of eigenfunctions of the multiple differentiation operator subject to boundary conditions of the initial problem does not have the basis property. We prove the unique existence of a generalized solution to the mentioned problem.
Keywords: inverse problem, heat equation, initial temperature, final temperature, not strongly regular boundary conditions, Samarskii–Ionkin boundary conditions, biorthogonal Fourier series, Riesz basis.
Received: 11.02.2011
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 2, Pages 60–64
DOI: https://doi.org/10.3103/S1066369X12020089
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: I. Orazov, M. A. Sadybekov, “One nonlocal problem of determination of the temperature and density of heat sources”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 2, 70–75; Russian Math. (Iz. VUZ), 56:2 (2012), 60–64
Citation in format AMSBIB
\Bibitem{OraSad12}
\by I.~Orazov, M.~A.~Sadybekov
\paper One nonlocal problem of determination of the temperature and density of heat sources
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 2
\pages 70--75
\mathnet{http://mi.mathnet.ru/ivm8435}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3076531}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 2
\pages 60--64
\crossref{https://doi.org/10.3103/S1066369X12020089}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862646885}
Linking options:
  • https://www.mathnet.ru/eng/ivm8435
  • https://www.mathnet.ru/eng/ivm/y2012/i2/p70
  • This publication is cited in the following 43 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:620
    Full-text PDF :162
    References:70
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024