Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 1, Pages 92–95 (Mi ivm8425)  

Brief communications

Three classes of Weitzenböck manifolds

I. A. Gordeevaa, S. E. Stepanovb

a Chair of Information Science, Vladimir State University, Vladimir, Russia
b Chair of Mathematics, Financial University at the Government of the Russian Federation, Moscow, Russia
References:
Abstract: The Weitzenböck manifold is the triplet defined by a differential manifold with the metric $g$ of a certain signature and linear connection of zero curvature tensor, the nonzero torsion tensor, and the metricity property. The theory of such manifolds is called the “new theory of gravity”. We consider properties of three classes of such manifolds and on this base prove the vanishing thorems.
Keywords: connection with torsion, curvature tensor, torsion tensor, teleparallelism, Weitzenböck spaces.
Presented by the member of Editorial Board: V. V. Shurygin
Received: 17.03.2011
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 1, Pages 83–85
DOI: https://doi.org/10.3103/S1066369X12010136
Bibliographic databases:
Document Type: Article
UDC: 514.764+514.822
Language: Russian
Citation: I. A. Gordeeva, S. E. Stepanov, “Three classes of Weitzenböck manifolds”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1, 92–95; Russian Math. (Iz. VUZ), 56:1 (2012), 83–85
Citation in format AMSBIB
\Bibitem{GorSte12}
\by I.~A.~Gordeeva, S.~E.~Stepanov
\paper Three classes of Weitzenb\"ock manifolds
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 1
\pages 92--95
\mathnet{http://mi.mathnet.ru/ivm8425}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2975924}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 1
\pages 83--85
\crossref{https://doi.org/10.3103/S1066369X12010136}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862686216}
Linking options:
  • https://www.mathnet.ru/eng/ivm8425
  • https://www.mathnet.ru/eng/ivm/y2012/i1/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024