Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2012, Number 1, Pages 87–91 (Mi ivm8424)  

This article is cited in 4 scientific papers (total in 4 papers)

Brief communications

The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them

E. M. Vechtomov, E. N. Lubyagina

Chair of Algebra and Discrete Mathematics, Vyatka State University of Humanities, Kirov, Russia
Full-text PDF (160 kB) Citations (4)
References:
Abstract: We consider an idempotent semiring of continuous $[0,1]$-valued functions defined on a compact $X$ with the usual multiplication and addition $\max$. We prove the determinability of $X$ by the lattice of ideals and the lattice of congruencies of the indicated semiring.
Keywords: semiring, unit interval, compact, semiring of continuous functions, lattice of ideals, lattice of congruencies.
Presented by the member of Editorial Board: M. M. Arslanov
Received: 13.05.2011
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, Volume 56, Issue 1, Pages 79–82
DOI: https://doi.org/10.3103/S1066369X12010124
Bibliographic databases:
Document Type: Article
UDC: 512.556
Language: Russian
Citation: E. M. Vechtomov, E. N. Lubyagina, “The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 1, 87–91; Russian Math. (Iz. VUZ), 56:1 (2012), 79–82
Citation in format AMSBIB
\Bibitem{VecLub12}
\by E.~M.~Vechtomov, E.~N.~Lubyagina
\paper The determinability of compacts by lattices of ideals and congruencies of semirings of continuous $[0,1]$-valued functions on them
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2012
\issue 1
\pages 87--91
\mathnet{http://mi.mathnet.ru/ivm8424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2975923}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2012
\vol 56
\issue 1
\pages 79--82
\crossref{https://doi.org/10.3103/S1066369X12010124}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862661852}
Linking options:
  • https://www.mathnet.ru/eng/ivm8424
  • https://www.mathnet.ru/eng/ivm/y2012/i1/p87
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:296
    Full-text PDF :69
    References:36
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024