Abstract:
In this paper, using the discrete Walsh transform, we construct orthogonal and biorthogonal wavelets for complex periodic sequences similar to those studied earlier for the Cantor group. Results of numerical experiments demonstrate the effectiveness of image processing methods based on the constructed discrete wavelets.
Citation:
Yu. A. Farkov, S. A. Stroganov, “The use of discrete dyadic wavelets in image processing”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 7, 57–66; Russian Math. (Iz. VUZ), 55:7 (2011), 47–55
This publication is cited in the following 10 articles:
Yu. A. Farkov, “Freimy v analize Uolsha, matritsy Adamara i ravnomerno raspredelennye mnozhestva”, Materialy 20 Mezhdunarodnoi Saratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya», Saratov, 28 yanvarya — 1 fevralya 2020 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 199, VINITI RAN, M., 2021, 17–30
M. S. Bespalov, “Troichnyi diskretnyi veivletnyi bazis”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:3 (2020), 367–377
M. S. Bespalov, M. S. Bespalov, “Extraction of Walsh Harmonics by Linear Combinations of Dyadic Shifts”, J Math Sci, 249:6 (2020), 838
Yu. A. Farkov, M. G. Robakidze, “Parseval Frames and the Discrete Walsh Transform”, Math. Notes, 106:3 (2019), 446–456
Yu. A. Farkov, Pammy Manchanda, Abul Hasan Siddiqi, Industrial and Applied Mathematics, Construction of Wavelets Through Walsh Functions, 2019, 253
Siddiqi A.H., Manchanda P., “Sampling and Approximation Theorems For Wavelets and Frames on Vilenkin Group”, 2017 International Conference on Sampling Theory and Applications (Sampta), IEEE, 2017, 614–616
Hu Zh., Hou Ch., “Wavelet Transformation of Road Simulation Based on Fbm Fractal Characteristics”, International Conference on Electrical and Control Engineering (Icece 2015), Destech Publications, Inc, 2015, 255–260