Abstract:
We consider non-standard generalized Hölder spaces of functions defined on a segment of the real axis, whose local continuity modulus has a majorant varying from point to point. We establish some properties of fractional integration operators of variable order acting from variable generalized Hölder spaces to those with a “better” majorant, as well as properties of fractional differentiation operators of variable order acting from the same spaces to those with a “worse” majorant.
Citation:
B. G. Vakulov, E. S. Kochurov, N. G. Samko, “Zygmund-type estimates for fractional integration and differentiation operators of variable order”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6, 25–34; Russian Math. (Iz. VUZ), 55:6 (2011), 20–28
This publication is cited in the following 4 articles:
Yuri E. Drobotov, Boris G. Vakulov, “HYPERSINGULAR INTEGRALS IN POWER-WEIGHTED VARIABLE GENERALIZED HÖLDER SPACES OVER METRIC MEASURE SPACES”, J Math Sci, 2024
B. G. Vakulov, Yu. E. Drobotov, “Riesz Potential with Integrable Density in Hölder-Variable Spaces”, Math. Notes, 108:5 (2020), 652–660
B. G. Vakulov, Yu. E. Drobotov, “Operator tipa potentsiala peremennogo poryadka po $\mathbb{\dot{R}}^n$ v vesovykh prostranstvakh obobschennoi peremennoi gelderovosti”, Sib. elektron. matem. izv., 14 (2017), 647–656
Abreu-Blaya R., Bory-Reyes J., “The Plemelj-Privalov Theorem in Variable Exponent Clifford Analysis”, Georgian Math. J., 19:3 (2012), 401–415