|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, Number 4, Pages 8–14
(Mi ivm7286)
|
|
|
|
An asymptotically optimal cubic spline
N. K. Bakirov Chair of Mathematics, Ufa State Aviation Technical University, Ufa, Russia
Abstract:
In this paper we consider the interpolation problem for a sufficiently smooth function defined on the segment $[0,1]$. The initial data are values of the mentioned function at given mesh nodes. We construct a cubic spline asymptotically optimal with respect to the growing number of nodes. For the constructed spline we estimate interpolation errors in the uniform and $L_2$ metrics.
Keywords:
cubic spline, interpolation.
Received: 20.10.2009
Citation:
N. K. Bakirov, “An asymptotically optimal cubic spline”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 4, 8–14; Russian Math. (Iz. VUZ), 55:4 (2011), 5–11
Linking options:
https://www.mathnet.ru/eng/ivm7286 https://www.mathnet.ru/eng/ivm/y2011/i4/p8
|
Statistics & downloads: |
Abstract page: | 396 | Full-text PDF : | 189 | References: | 38 | First page: | 14 |
|