|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, Number 3, Pages 86–94
(Mi ivm7248)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Similarity of matrices with integer spectra over the ring of integers
S. V. Sidorov Chair of Mathematical Logic and Higher Algebra, Nizhni Novgorod State University, Nizhni Novgorod, Russia
Abstract:
We consider matrices with integer spectra whose Jordan forms contain no blocks of equal order for one and the same eigenvalue. We propose a quasipolynomial time algorithm for recognizing the similarity of such matrices over the ring of integers. In the case, when the algebraic multiplicity of all eigenvalues equals 1, we estimate the number of similarity classes.
Keywords:
similarity of matrices, ring of integers, Jordan form, matrix spectrum.
Received: 17.09.2009 Revised: 02.11.2009
Citation:
S. V. Sidorov, “Similarity of matrices with integer spectra over the ring of integers”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 3, 86–94; Russian Math. (Iz. VUZ), 55:3 (2011), 77–84
Linking options:
https://www.mathnet.ru/eng/ivm7248 https://www.mathnet.ru/eng/ivm/y2011/i3/p86
|
Statistics & downloads: |
Abstract page: | 632 | Full-text PDF : | 353 | References: | 107 | First page: | 24 |
|