Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2011, Number 1, Pages 49–58(Mi ivm7171)
This article is cited in 12 scientific papers (total in 12 papers)
A nonlocal boundary-value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and various orders of degeneracy
Abstract:
We prove the unique solvability of the boundary value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and with various orders of degeneracy.
Keywords:
mixed-type equation, problem with conormal derivative, degeneration lines, extremum principle, Fredholm integral equation.
Citation:
M. S. Salakhitdinov, B. I. Islomov, “A nonlocal boundary-value problem with conormal derivative for a mixed-type equation with two inner degeneration lines and various orders of degeneracy”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 1, 49–58; Russian Math. (Iz. VUZ), 55:1 (2011), 42–49
\Bibitem{SalIsl11}
\by M.~S.~Salakhitdinov, B.~I.~Islomov
\paper A nonlocal boundary-value problem with conormal derivative for a~mixed-type equation with two inner degeneration lines and various orders of degeneracy
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2011
\issue 1
\pages 49--58
\mathnet{http://mi.mathnet.ru/ivm7171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2810193}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2011
\vol 55
\issue 1
\pages 42--49
\crossref{https://doi.org/10.3103/S1066369X11010051}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952860565}
Linking options:
https://www.mathnet.ru/eng/ivm7171
https://www.mathnet.ru/eng/ivm/y2011/i1/p49
This publication is cited in the following 12 articles:
Nedyu Popivanov, Evgeny Moiseev, Yani Boshev, THE NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY INTERNATIONAL CONFERENCE FOR ENGINEERING SCIENCES, 3303, THE NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY INTERNATIONAL CONFERENCE FOR ENGINEERING SCIENCES, 2025, 030004
B. I. Islomov, A. A. Abdullayev, “Bitsadze–Samarsky Type Nonlocal Boundary Value Problem for a Second Kind Mixed Equation with a Conjugation Condition of the Frankl Type”, Lobachevskii J Math, 45:3 (2024), 1145
Nedyu Popivanov, Evgeny Moiseev, Yani Boshev, APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'22): Proceedings of the 48th International Conference “Applications of Mathematics in Engineering and Economics”, 2939, APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'22): Proceedings of the 48th International Conference “Applications of Mathematics in Engineering and Economics”, 2023, 040004
B. I. Islomov, A. A. Abdullayev, “A boundary value problem with a conormal derivative for the mixed type equation of second kind with a conjugation condition of the Frankl type”, Russian Math. (Iz. VUZ), 66:9 (2022), 11–25
T. G. Ergashev, Z. R. Tulakova, “The Neumann Problem for a Multidimensional Elliptic Equation with Several Singular Coefficients in an Infinite Domain”, Lobachevskii J Math, 43:1 (2022), 199
T. K. Yuldashev, B. I. Islomov, “Obratnaya kraevaya zadacha dlya integro-differentsialnogo uravneniya psevdoparabolo-psevdogiperbolicheskogo tipa”, Differentsialnye uravneniya, geometriya i topologiya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 201, VINITI RAN, M., 2021, 16–32
Yuldashev T.K. Islomov B.I. Abdullaev A.A., “On Solvability of a Poincare-Tricomi Type Problem For An Elliptic-Hyperbolic Equation of the Second Kind”, Lobachevskii J. Math., 42:3, SI (2021), 663–675
Popivanov N. Moiseev E. Boshev Ya., “Pohozhaev Type Identity For a Nonlinear Mixed Type Equation With Two Orthogonal Degeneration Lines”, AIP Conference Proceedings, 2333, ed. Pasheva V. Popivanov N. Venkov G., Amer Inst Physics, 2021, 120006
Tursun K. Yuldashev, Farhod D. Rakhmonov, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2365, INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020, 2021, 060004
Yuldashev T.K., “Nonlocal Inverse Problem For a Pseudohyperbolic-Pseudoelliptic Type Integro-Differential Equations”, Axioms, 9:2 (2020), 45
N. B. Islamov, “Analogue of Bitsadze–Samarskii problem for a class of parabolic-hyperbolic equation of second kind”, Ufa Math. J., 7:1 (2015), 31–45
M. S. Salakhitdinov, N. B. Islamov, “Nonlocal boundary-value problem with Bitsadze–Samarskii condition for equation of parabolic-hyperbolic type of the second kind”, Russian Math. (Iz. VUZ), 59:6 (2015), 34–42