Abstract:
We consider a static stabilization problem for a two-dimensional linear time-invariant control system with a delayed feedback. We obtain the necessary and sufficient conditions for the stabilizability of the system under consideration. The theorems proved in this paper show that such a delayed feedback approach is efficient in stabilizing the second-order linear systems.
Keywords:
linear time-invariant system, delayed feedback, stationary stabilization, asymptotic stability.
Citation:
M. M. Shumafov, “Stabilization of the second-order linear time-invariant control systems by a delayed feedback”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12, 87–90; Russian Math. (Iz. VUZ), 54:12 (2010), 76–78
\Bibitem{Shu10}
\by M.~M.~Shumafov
\paper Stabilization of the second-order linear time-invariant control systems by a~delayed feedback
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 12
\pages 87--90
\mathnet{http://mi.mathnet.ru/ivm7164}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2814582}
\elib{https://elibrary.ru/item.asp?id=15208514}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 12
\pages 76--78
\crossref{https://doi.org/10.3103/S1066369X10120091}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952825586}
Linking options:
https://www.mathnet.ru/eng/ivm7164
https://www.mathnet.ru/eng/ivm/y2010/i12/p87
This publication is cited in the following 4 articles:
I. V. Boykov, N. P. Krivulin, “Methods for Control of Dynamical Systems with Delayed Feedback”, J Math Sci, 255:5 (2021), 561
G. A. Leonov, M. M. Shumafov, “Pyragas stabilizability of unstable equilibria by nonstationary time-delayed feedback”, Autom. Remote Control, 79:6 (2018), 1029–1039