Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 10, Pages 60–68 (Mi ivm7140)  

This article is cited in 4 scientific papers (total in 4 papers)

The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$

I. A. Shakirov

Chair of Mathematical Analysis, Naberezhnye Chelny State Pedagogical Institute, Naberezhnye Chelny, Russia
Full-text PDF (178 kB) Citations (4)
References:
Abstract: In this paper we perform a comparative analysis of Lebesgue functions and constants of a family of Lagrange polynomials. We prove that if a polynomial from the family has the minimal norm in the space of square summable functions, then it also has the minimal norm as an operator which maps a space of continuous functions into itself.
Keywords: Lagrange polynomials, fundamental polynomials, Lebesgue functions, Lebesgue constants.
Received: 09.02.2009
Revised: 19.06.2009
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 10, Pages 52–59
DOI: https://doi.org/10.3103/S1066369X10100063
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: I. A. Shakirov, “The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to $C_{2\pi}$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 10, 60–68; Russian Math. (Iz. VUZ), 54:10 (2010), 52–59
Citation in format AMSBIB
\Bibitem{Sha10}
\by I.~A.~Shakirov
\paper The Lagrange trigonometric interpolation polynomial with the minimal norm considered as an operator from $C_{2\pi}$ to~$C_{2\pi}$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 10
\pages 60--68
\mathnet{http://mi.mathnet.ru/ivm7140}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2808742}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 10
\pages 52--59
\crossref{https://doi.org/10.3103/S1066369X10100063}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649618261}
Linking options:
  • https://www.mathnet.ru/eng/ivm7140
  • https://www.mathnet.ru/eng/ivm/y2010/i10/p60
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:537
    Full-text PDF :126
    References:90
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025