Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 7, Pages 56–63 (Mi ivm7108)  

Curvature identities for principle $T^1$-bundles over almost Hermitian manifolds

E. E. Ditkovskaya

Chair of Geometry, Moscow Pedagogical State University, Moscow, Russia
References:
Abstract: We study the equivalence of identities $R_1$, $R_2$, and $R_3$ for an almost Hermitian structure $S$ on the base of a canonical principal $T^1$-bundle and their contact analogs for the induced almost contact metric structure $S^\sharp$ on the total space of this bundle. We prove that the canonical connection of a canonical principal $T^1$-bundle over a Hermitian or a quasi-Kählerian manifold of the class $R_3$ is normal. We also prove that the canonical connection of a canonical principal $T^1$-bundle over a Vaisman–Gray manifold $M$ of the class $R_3$ is normal if and only if the Lie vector of the manifold $M$ belongs to the center of the adjoint $K$-algebra.
Keywords: principal toroidal fiber bundle, almost contact structure, curvature tensor.
Received: 25.07.2008
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 7, Pages 49–55
DOI: https://doi.org/10.3103/S1066369X10070054
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: E. E. Ditkovskaya, “Curvature identities for principle $T^1$-bundles over almost Hermitian manifolds”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 7, 56–63; Russian Math. (Iz. VUZ), 54:7 (2010), 49–55
Citation in format AMSBIB
\Bibitem{Dit10}
\by E.~E.~Ditkovskaya
\paper Curvature identities for principle $T^1$-bundles over almost Hermitian manifolds
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 7
\pages 56--63
\mathnet{http://mi.mathnet.ru/ivm7108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2752693}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 7
\pages 49--55
\crossref{https://doi.org/10.3103/S1066369X10070054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649536486}
Linking options:
  • https://www.mathnet.ru/eng/ivm7108
  • https://www.mathnet.ru/eng/ivm/y2010/i7/p56
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :49
    References:48
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024