Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 6, Pages 82–89 (Mi ivm6947)  

This article is cited in 2 scientific papers (total in 2 papers)

Bifurcations of periodic solutions near triangular libration points in the three-body problem

M. G. Yumagulov, O. N. Belikova

Chair of Applied Mathematics and Information Technologies, Sibai Institute (branch) of Bashkir State University, Sibai, Russia
Full-text PDF (179 kB) Citations (2)
References:
Abstract: We consider the problem on bifurcations of periodic solutions near triangular libration points in the plane elliptic bounded three-body problem. We determine values of the mass parameter such that at small values of the eccentricity the problem has non-stationary periodic solutions close to a libration point. We determine bifurcation types and study the asymptotic for the mentioned solutions.
Keywords: three-body problem, libration points, bifurcation, periodic solutions, asymptotic formulas.
Received: 25.04.2008
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 6, Pages 69–74
DOI: https://doi.org/10.3103/S1066369X10060083
Bibliographic databases:
Document Type: Article
UDC: 521.135
Language: Russian
Citation: M. G. Yumagulov, O. N. Belikova, “Bifurcations of periodic solutions near triangular libration points in the three-body problem”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 6, 82–89; Russian Math. (Iz. VUZ), 54:6 (2010), 69–74
Citation in format AMSBIB
\Bibitem{YumBel10}
\by M.~G.~Yumagulov, O.~N.~Belikova
\paper Bifurcations of periodic solutions near triangular libration points in the three-body problem
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 6
\pages 82--89
\mathnet{http://mi.mathnet.ru/ivm6947}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2779424}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 6
\pages 69--74
\crossref{https://doi.org/10.3103/S1066369X10060083}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649534289}
Linking options:
  • https://www.mathnet.ru/eng/ivm6947
  • https://www.mathnet.ru/eng/ivm/y2010/i6/p82
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :120
    References:49
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024