Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 3, Pages 97–101 (Mi ivm6717)  

This article is cited in 4 scientific papers (total in 4 papers)

Brief communications

Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds

S. E. Stepanova, I. I. Tsyganokb

a Chair of Mathematics, Financial Academy at the Government of the Russian Federation, Moscow, Russia
b Chair of General Scientific Disciplines, Vladimir Branch of Russian University of Cooperation, Vladimir, Russia
Full-text PDF (173 kB) Citations (4)
References:
Abstract: The definition of a Ricci soliton was introduced by R. Hamilton; it naturally generalizes the Einstein metric. A Ricci soliton on a smooth manifold $M$ is the triplet $(g_0,\xi,\lambda)$, where $g_0$ is a complete Riemannian metric, $\xi$ is a vector field, and $\lambda$ is a constant value such that the Ricci tensor $\mathrm{Ric}_0$ of the metric $g_0$ satisfies the equation $-2\mathrm{Ric}_0=L_\xi g_0+2\lambda g_0$. The following assertion is one of the main results of this paper. Assume that $(g_0,\xi,\lambda)$ is a Ricci soliton such that $(M,g_0)$ is a compete noncompact oriented Riemannian manifold, $\int_M\|\xi\|\,dv<\infty$, and the scalar curvature $s_0$ of the metric $g_0$ has a constant sign on $M$. Then $(M,g_0)$ is an Einstein manifold.
Keywords: Ricci solitons, infinitesimal harmonic transformations, complete Riemannian manifold.
Received: 19.08.2009
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 3, Pages 84–87
DOI: https://doi.org/10.3103/S1066369X10030138
Bibliographic databases:
Document Type: Article
UDC: 514.764
Language: Russian
Citation: S. E. Stepanov, I. I. Tsyganok, “Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3, 97–101; Russian Math. (Iz. VUZ), 54:3 (2010), 84–87
Citation in format AMSBIB
\Bibitem{SteTsy10}
\by S.~E.~Stepanov, I.~I.~Tsyganok
\paper Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 3
\pages 97--101
\mathnet{http://mi.mathnet.ru/ivm6717}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2778330}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 3
\pages 84--87
\crossref{https://doi.org/10.3103/S1066369X10030138}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649550076}
Linking options:
  • https://www.mathnet.ru/eng/ivm6717
  • https://www.mathnet.ru/eng/ivm/y2010/i3/p97
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:760
    Full-text PDF :192
    References:78
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024