Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 3, Pages 92–96 (Mi ivm6716)  

This article is cited in 1 scientific paper (total in 1 paper)

Brief communications

Estimation of an algebraic polynomial in a plane in terms of its real part on the unit circle

A. V. Parfenenkov

Chair of Mathematical Analysis and Function Theory, Ural State University, Ekaterinburg, Russia
Full-text PDF (167 kB) Citations (1)
References:
Abstract: We consider the class $\mathcal P_n^*$ of algebraic polynomials of a complex variable with complex coefficients of degree at most $n$ with real constant terms. In this class we estimate the uniform norm of a polynomial $P_n\in\mathcal P_n^*$ on the circle $\Gamma_r=\{z\in\mathbb C\colon|z|=r\}$ of radius $r>1$ in terms of the norm of its real part on the unit circle $\Gamma_1$. More precisely, we study the best constant $\mu(r,n)$ in the inequality $\|P_n\|_{C(\Gamma_r)}\leq\mu(r,n)\|\operatorname{Re}P_n\|_{C(\Gamma_1)}$. We prove that $\mu(r,n)=r^n$ for $r^{n+2}-r^n-3r^2-4r+1\geq0$. In order to justify this result, we obtain the corresponding quadrature formula. We give an example which shows that the strict inequality $\mu(r,n)>r^n$ is valid for $r$ sufficiently close to 1.
Keywords: inequalities for algebraic polynomials, uniform norm, circle in complex plane.
Received: 19.06.2009
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 3, Pages 80–83
DOI: https://doi.org/10.3103/S1066369X10030126
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: A. V. Parfenenkov, “Estimation of an algebraic polynomial in a plane in terms of its real part on the unit circle”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3, 92–96; Russian Math. (Iz. VUZ), 54:3 (2010), 80–83
Citation in format AMSBIB
\Bibitem{Par10}
\by A.~V.~Parfenenkov
\paper Estimation of an algebraic polynomial in a~plane in terms of its real part on the unit circle
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 3
\pages 92--96
\mathnet{http://mi.mathnet.ru/ivm6716}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2778329}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 3
\pages 80--83
\crossref{https://doi.org/10.3103/S1066369X10030126}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649549065}
Linking options:
  • https://www.mathnet.ru/eng/ivm6716
  • https://www.mathnet.ru/eng/ivm/y2010/i3/p92
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:441
    Full-text PDF :77
    References:70
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024