|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 3, Pages 88–91
(Mi ivm6715)
|
|
|
|
Brief communications
Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle
A. I. Mikheevaa, R. Z. Dautovb a Department of Computational Mathematics, Research Institute of Mathematics and Mechanics, Kazan State University, Kazan, Russia
b Chair of Computational Mathematics, Kazan State University, Kazan, Russia
Abstract:
In this paper we propose a new technique for the stability analysis of the coincidence set of a solution to a parabolic variational inequality with an obstacle inside the domain. It is based on the reformulation of the initial inequality in the form of a parabolic initial boundary value problem with an exact penalty operator.
Keywords:
variational inequality, obstacle problem, coincidence set, stability, capacity.
Received: 28.09.2009
Citation:
A. I. Mikheeva, R. Z. Dautov, “Stability of the coincidence set of a solution to a parabolic variational inequality with an obstacle”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3, 88–91; Russian Math. (Iz. VUZ), 54:3 (2010), 77–79
Linking options:
https://www.mathnet.ru/eng/ivm6715 https://www.mathnet.ru/eng/ivm/y2010/i3/p88
|
Statistics & downloads: |
Abstract page: | 387 | Full-text PDF : | 61 | References: | 65 | First page: | 4 |
|