Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 3, Pages 9–14 (Mi ivm6706)  

This article is cited in 7 scientific papers (total in 7 papers)

To the theory of operator monotone and operator convex functions

Dinh Trung Hoa, O. E. Tikhonov

Research Institute of Mathematics and Mechanics, Kazan State University, Kazan, Russia
Full-text PDF (182 kB) Citations (7)
References:
Abstract: We prove that a real function is operator monotone (operator convex) if the corresponding monotonicity (convexity) inequalities are valid for some normal state on the algebra of all bounded operators in an infinite-dimensional Hilbert space. We describe the class of convex operator functions with respect to a given von Neumann algebra in dependence of types of direct summands in this algebra. We prove that if a function from $\mathbb R^+$ into $\mathbb R^+$ is monotone with respect to a von Neumann algebra, then it is also operator monotone in the sense of the natural order on the set of positive self-adjoint operators affiliated with this algebra.
Keywords: operator monotone function, operator convex function, von Neumann algebra, $C^*$-algebra.
Received: 23.06.2008
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 3, Pages 7–11
DOI: https://doi.org/10.3103/S1066369X10030023
Bibliographic databases:
UDC: 517.986
Language: Russian
Citation: Dinh Trung Hoa, O. E. Tikhonov, “To the theory of operator monotone and operator convex functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 3, 9–14; Russian Math. (Iz. VUZ), 54:3 (2010), 7–11
Citation in format AMSBIB
\Bibitem{DinTik10}
\by Dinh~Trung~Hoa, O.~E.~Tikhonov
\paper To the theory of operator monotone and operator convex functions
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 3
\pages 9--14
\mathnet{http://mi.mathnet.ru/ivm6706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2778319}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 3
\pages 7--11
\crossref{https://doi.org/10.3103/S1066369X10030023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649557208}
Linking options:
  • https://www.mathnet.ru/eng/ivm6706
  • https://www.mathnet.ru/eng/ivm/y2010/i3/p9
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:888
    Full-text PDF :137
    References:68
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024