|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 2, Pages 53–65
(Mi ivm6699)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Some extremal problems for algebraic polynomials in loaded spaces
B. P. Osilenker Chair of Higher Mathematics, Moscow State Building University, Moscow, Russia
Abstract:
Let
$$
\Pi _N^{(r)}(x)=\sum_{k=N-r+1}^Na_k^0x^k+\sum_{j=0}^{N-r}a_jx^j \quad(a_N^{(0)}>0)
$$
be an algebraic polynomial with fixed coefficients $a_k^{(0)}$. For the $l$th derivative of the mentioned polynomial we solve the following extremal problems: in a loaded Jacobi space with the inner product
$$
\langle f,g\rangle=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}\int_{-1}^1fg(1-x)^\alpha(1+x)^\beta\,dx+Lf(1)g(1)+Mf(-1)g(-1),
$$
$(L,M\ge0)$,
find $\inf\langle D^l[\Pi_N^{(r)}(x)],D^l[\Pi_N^{(r)}(x)]\rangle$ ($D=\frac d{dx}$, $0\le l\le N-r$)
and calculate extremal polynomials.
Keywords:
extremal problem, loaded spaces, loaded orthogonal polynomials, algebraic polynomials, classical Jacobi polynomials.
Received: 29.10.2007
Citation:
B. P. Osilenker, “Some extremal problems for algebraic polynomials in loaded spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2, 53–65; Russian Math. (Iz. VUZ), 54:2 (2010), 46–56
Linking options:
https://www.mathnet.ru/eng/ivm6699 https://www.mathnet.ru/eng/ivm/y2010/i2/p53
|
Statistics & downloads: |
Abstract page: | 422 | Full-text PDF : | 70 | References: | 68 | First page: | 4 |
|