Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, Number 2, Pages 53–65 (Mi ivm6699)  

This article is cited in 2 scientific papers (total in 2 papers)

Some extremal problems for algebraic polynomials in loaded spaces

B. P. Osilenker

Chair of Higher Mathematics, Moscow State Building University, Moscow, Russia
Full-text PDF (226 kB) Citations (2)
References:
Abstract: Let
$$ \Pi _N^{(r)}(x)=\sum_{k=N-r+1}^Na_k^0x^k+\sum_{j=0}^{N-r}a_jx^j \quad(a_N^{(0)}>0) $$
be an algebraic polynomial with fixed coefficients $a_k^{(0)}$. For the $l$th derivative of the mentioned polynomial we solve the following extremal problems: in a loaded Jacobi space with the inner product
$$ \langle f,g\rangle=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1}\Gamma(\alpha+1)\Gamma(\beta+1)}\int_{-1}^1fg(1-x)^\alpha(1+x)^\beta\,dx+Lf(1)g(1)+Mf(-1)g(-1), $$
$(L,M\ge0)$, find $\inf\langle D^l[\Pi_N^{(r)}(x)],D^l[\Pi_N^{(r)}(x)]\rangle$ ($D=\frac d{dx}$, $0\le l\le N-r$) and calculate extremal polynomials.
Keywords: extremal problem, loaded spaces, loaded orthogonal polynomials, algebraic polynomials, classical Jacobi polynomials.
Received: 29.10.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, Volume 54, Issue 2, Pages 46–56
DOI: https://doi.org/10.3103/S1066369X10020064
Bibliographic databases:
UDC: 517.538
Language: Russian
Citation: B. P. Osilenker, “Some extremal problems for algebraic polynomials in loaded spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 2, 53–65; Russian Math. (Iz. VUZ), 54:2 (2010), 46–56
Citation in format AMSBIB
\Bibitem{Osi10}
\by B.~P.~Osilenker
\paper Some extremal problems for algebraic polynomials in loaded spaces
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2010
\issue 2
\pages 53--65
\mathnet{http://mi.mathnet.ru/ivm6699}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2667272}
\zmath{https://zbmath.org/?q=an:1191.33004}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2010
\vol 54
\issue 2
\pages 46--56
\crossref{https://doi.org/10.3103/S1066369X10020064}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78649618527}
Linking options:
  • https://www.mathnet.ru/eng/ivm6699
  • https://www.mathnet.ru/eng/ivm/y2010/i2/p53
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:422
    Full-text PDF :70
    References:68
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024