Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, Number 10, Pages 51–62 (Mi ivm3077)  

This article is cited in 1 scientific paper (total in 1 paper)

Representation of measurable functions by series with respect to Walsh subsystems

M. A. Nalbandyan

Chair of Higher Mathematics, Erevan State University, Erevan, Republic of Armenia
Full-text PDF (234 kB) Citations (1)
References:
Abstract: For every sequence $\{\omega(n)\}_{n\in\mathbb N}$ that tends to infinity we construct a “quasiquadratic” representation spectrum $\Lambda=\{n^2+o(\omega(n))\}_{n\in\mathbb N}$: for each almost everywhere finite measurable function $f(x)$ there exists a series in the form $\sum_{k\in\Lambda}a_kw_k(x)$ that converges almost everywhere to this function, where $\{w_k(x)\}_{k\in\mathbb N}$ is the Walsh system.
We also find representation spectra in the form $\{n^l+o(n^l)\}_{n\in\mathbb N}$, where $l\in\{2^k\}_{k\in\mathbb N}$.
Keywords: Walsh system, orthogonal series, representation theorems, expansion spectrum.
Received: 13.06.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, Volume 53, Issue 10, Pages 45–56
DOI: https://doi.org/10.3103/S1066369X09100065
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: M. A. Nalbandyan, “Representation of measurable functions by series with respect to Walsh subsystems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 10, 51–62; Russian Math. (Iz. VUZ), 53:10 (2009), 45–56
Citation in format AMSBIB
\Bibitem{Nal09}
\by M.~A.~Nalbandyan
\paper Representation of measurable functions by series with respect to Walsh subsystems
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2009
\issue 10
\pages 51--62
\mathnet{http://mi.mathnet.ru/ivm3077}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2657223}
\zmath{https://zbmath.org/?q=an:05621784}
\elib{https://elibrary.ru/item.asp?id=12514159}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2009
\vol 53
\issue 10
\pages 45--56
\crossref{https://doi.org/10.3103/S1066369X09100065}
Linking options:
  • https://www.mathnet.ru/eng/ivm3077
  • https://www.mathnet.ru/eng/ivm/y2009/i10/p51
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :62
    References:44
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024