Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2009, Number 7, Pages 51–64 (Mi ivm3044)  

This article is cited in 3 scientific papers (total in 3 papers)

The Cauchy problem in Sobolev spaces for Dirac operators

I. V. Shestakov

Chair of Function Theory, Institute of Mathematics, Krasnoyarsk, Russia
Full-text PDF (246 kB) Citations (3)
References:
Abstract: In this paper we consider the Cauchy problem as a typical example of ill-posed boundary value problems. We describe the necessary and sufficient solvability conditions for the Cauchy problem for a Dirac operator AA in Sobolev spaces in a bounded domain DRn with piecewise smooth boundary. Namely, we reduce the Cauchy problem for the Dirac operator to the problem of the harmonic extension from a smaller domain to a larger one.
Moreover, along with the solvability conditions for the problem, using bases with double orthogonality, we construct a Carleman formula for recovering a function u from the Sobolev space Hs(D), sN, by its values on Γ and values Au in D, where Γ is an open connected subset of the boundary D.
It is worth pointing out that we impose no assumptions about geometric properties of the domain D, except for its connectedness.
Keywords: Cauchy problem, Dirac operators, Carleman formula.
Received: 26.03.2007
Revised: 12.06.2008
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, Volume 53, Issue 7, Pages 43–54
DOI: https://doi.org/10.3103/S1066369X09070056
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: I. V. Shestakov, “The Cauchy problem in Sobolev spaces for Dirac operators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 7, 51–64; Russian Math. (Iz. VUZ), 53:7 (2009), 43–54
Citation in format AMSBIB
\Bibitem{She09}
\by I.~V.~Shestakov
\paper The Cauchy problem in Sobolev spaces for Dirac operators
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2009
\issue 7
\pages 51--64
\mathnet{http://mi.mathnet.ru/ivm3044}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584204}
\zmath{https://zbmath.org/?q=an:1181.35042}
\elib{https://elibrary.ru/item.asp?id=12514170}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2009
\vol 53
\issue 7
\pages 43--54
\crossref{https://doi.org/10.3103/S1066369X09070056}
Linking options:
  • https://www.mathnet.ru/eng/ivm3044
  • https://www.mathnet.ru/eng/ivm/y2009/i7/p51
  • This publication is cited in the following 3 articles:
    1. Abderrazek Benhassine, “Ground states solutions for nonlinear Dirac equations”, Ricerche mat, 2022  crossref
    2. Alexander A. Shlapunov, “Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators”, Zhurn. SFU. Ser. Matem. i fiz., 4:2 (2011), 217–228  mathnet  elib
    3. I. V. Shestakov, A. A. Shlapunov, “The Cauchy problem for operators with injective symbol in the Lebesgue space L2 in a domain”, Siberian Math. J., 50:3 (2009), 547–559  mathnet  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:481
    Full-text PDF :98
    References:70
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025