Abstract:
We consider a two-layer elastic waveguide structure such that its one layer is unbounded in the lateral direction and at the boundary of the other one the standard boundary conditions are stated. We study several kinds of eigenwaves of this structure. In general, they have a complex-valued longitudinal propagation constant (the spectral parameter). On the base of the Green formula we introduce the scalar product of two waves and prove that the set of eigenwaves of the semiopen elastic waveguide is orthogonal. We construct families of waves which belong to discrete and continuous parts of the spectrum.
Keywords:
elastic waves, waveguide, stratified medium, eigenwaves, Green formula, scalar product, discrete and continuous spectrum.
Citation:
K. N. Vdovina, N. B. Pleschinskii, D. N. Tumakov, “On the orthogonality of eigenwaves in a semi-open elastic waveguide”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 9, 69–75; Russian Math. (Iz. VUZ), 52:9 (2008), 60–64
\Bibitem{VdoPleTum08}
\by K.~N.~Vdovina, N.~B.~Pleschinskii, D.~N.~Tumakov
\paper On the orthogonality of eigenwaves in a semi-open elastic waveguide
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 9
\pages 69--75
\mathnet{http://mi.mathnet.ru/ivm1722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2468308}
\zmath{https://zbmath.org/?q=an:05621386}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 9
\pages 60--64
\crossref{https://doi.org/10.3103/S1066369X08090089}
Linking options:
https://www.mathnet.ru/eng/ivm1722
https://www.mathnet.ru/eng/ivm/y2008/i9/p69
This publication is cited in the following 4 articles:
A. V. Anufrieva, K. N. Stekhina, D. N. Tumakov, “O sobstvennykh volnakh transversalno-izotropnogo sloya, sopryazhennogo s izotropnoi poluploskostyu”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 156, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2014, 87–94
K.N. Stekhina, D.N. Tumakov, Proceedings of the International Conference Days on Diffraction 2013, 2013, 136
A.V. Anufrieva, D.N. Tumakov, V.L. Kipot, Proceedings of the International Conference Days on Diffraction 2013, 2013, 11
A. V. Anufrieva, D. N. Tumakov, “Difraktsiya ploskoi uprugoi volny na gradientnom sloe”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 154, no. 4, Izd-vo Kazanskogo un-ta, Kazan, 2012, 116–125