Abstract:
We consider the problem on the continuation of a solution
to a system of Maxwell equations, using its values on a part of the domain boundary.
Citation:
E. N. Sattarov, “On the continuation of the solution of a homogeneous system of Maxwell equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 78–83; Russian Math. (Iz. VUZ), 52:8 (2008), 65–69
\Bibitem{Sat08}
\by E.~N.~Sattarov
\paper On the continuation of the solution of a homogeneous system of Maxwell equations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 8
\pages 78--83
\mathnet{http://mi.mathnet.ru/ivm1683}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2468318}
\zmath{https://zbmath.org/?q=an:1178.35359}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 8
\pages 65--69
\crossref{https://doi.org/10.3103/S1066369X08080094}
Linking options:
https://www.mathnet.ru/eng/ivm1683
https://www.mathnet.ru/eng/ivm/y2008/i8/p78
This publication is cited in the following 4 articles:
Ermamat N. Sattorov, Zuxro E. Ermamatova, “Carleman's formula of a solutions of the Poisson equation in bounded domain”, Ural Math. J., 7:2 (2021), 110–120
E;. N. Sattorov, Z. E. Ermamatova, “On recovery of solutions to homogeneous system of Maxwell equations in a domain by their values on a part of a boundary”, Russian Math. (Iz. VUZ), 63:2 (2019), 35–43
D. A. Zhuraev, “O zadache Koshi dlya matrichnykh faktorizatsii uravneniya Gelmgoltsa v ogranichennoi oblasti”, Sib. elektron. matem. izv., 15 (2018), 11–20
E. N. Sattorov, “Reconstruction of solutions to a generalized Moisil–Teodorescu system in a spatial domain from their values on a part of the boundary”, Russian Math. (Iz. VUZ), 55:1 (2011), 62–73