Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 8, Pages 3–15 (Mi ivm1675)  

This article is cited in 43 scientific papers (total in 43 papers)

Equivalence of KK-functionals and moduli of smoothness constructed by generalized Dunkl translations

S. S. Platonov, E. S. Belkina

Petrozavodsk State University
References:
Abstract: In a Hilbert space L2,α:=L2(R,|x|2α+1dx), α>1/2, we study the generalized Dunkl translations constructed by the Dunkl differential-difference operator. Using the generalized Dunkl translations, we define generalized modulus of smoothness in the space L2,α. On the base of the Dunkl operator we define Sobolev-type spaces and K-functionals. The main result of the paper is the proof of the equivalence theorem for a K-functional and a modulus of smoothness.
Keywords: Dunkl operator, generalized Dunkl translation, K-functional, modulus of smoothness.
Received: 26.07.2006
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 8, Pages 1–11
DOI: https://doi.org/10.3103/S1066369X0808001X
Bibliographic databases:
UDC: 517.518
Language: Russian
Citation: S. S. Platonov, E. S. Belkina, “Equivalence of K-functionals and moduli of smoothness constructed by generalized Dunkl translations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 3–15; Russian Math. (Iz. VUZ), 52:8 (2008), 1–11
Citation in format AMSBIB
\Bibitem{PlaBel08}
\by S.~S.~Platonov, E.~S.~Belkina
\paper Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 8
\pages 3--15
\mathnet{http://mi.mathnet.ru/ivm1675}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2468310}
\zmath{https://zbmath.org/?q=an:1175.43001}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 8
\pages 1--11
\crossref{https://doi.org/10.3103/S1066369X0808001X}
Linking options:
  • https://www.mathnet.ru/eng/ivm1675
  • https://www.mathnet.ru/eng/ivm/y2008/i8/p3
  • This publication is cited in the following 43 articles:
    1. Vishvesh Kumar, Joel E. Restrepo, Trends in Mathematics, 1, Extended Abstracts MWCAPDE 2023, 2024, 79  crossref
    2. Vishvesh Kumar, Joel E. Restrepo, Michael Ruzhansky, “Asymptotic Estimates for the Growth of Deformed Hankel Transform by Modulus of Continuity”, Results Math, 79:1 (2024)  crossref
    3. Fethi Bouzeffour, Wissem Jedidi, “On the Big Hartley transform”, Integral Transforms and Special Functions, 35:2 (2024), 113  crossref
    4. Fethi Bouzeffour, Wissem Jedidi, “Fractional Riesz–Feller type derivative for the one dimensional Dunkl operator and Lipschitz condition”, Integral Transforms and Special Functions, 35:1 (2024), 49  crossref
    5. Othman Tyr, “On the Fourier–Dunkl Coefficients of Generalized Lipschitz Classes on the Interval [1,1]”, Mediterr. J. Math., 21:5 (2024)  crossref
    6. M. Nadi, A. Bouhlal, E. M. Sadek, “Some New Properties Using Quaternionic Fourier–Mellin Transform on the Space L2(G,H)”, Bull. Malays. Math. Sci. Soc., 47:6 (2024)  crossref
    7. Othman Tyr, “Decay of Fourier-Dunkl transforms and generalized Lipschitz spaces”, Rend. Circ. Mat. Palermo, II. Ser, 2024  crossref
    8. Sergey Volosivets, “Fourier-Dunkl transforms and generalized symmetric Lipschitz classes”, Journal of Mathematical Analysis and Applications, 520:1 (2023), 126895  crossref
    9. M. El Hamma, A. Laamimi, Harrak El, “Lipschitz functions class for the generalized Dunkl transform”, Filomat, 37:8 (2023), 2377  crossref
    10. O. Tyr, R. Daher, “A note of some approximation theorems of functions on the Laguerre hypergroup”, Filomat, 37:6 (2023), 1959  crossref
    11. Mohamed Amine Boubatra, “Bernstein-nikolskii-stechkin inequality and Jackson's theorem for the index Whittaker transform”, Ann Univ Ferrara, 2023  crossref
    12. Larbi Rakhimi, Abdelmajid Khadari, Radouan Daher, “K-functional related to the Deformed Hankel Transform”, Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, 22:1 (2023), 13  crossref
    13. Abdelhak Belkhadir, Radouan Daher, Najat Safouane, “Titchmarsh's theorems, K-functional and Jackson's theorems for the free metaplectic transform”, Rend. Circ. Mat. Palermo, II. Ser, 72:7 (2023), 3325  crossref
    14. Fethi Bouzeffour, “Advancing Fractional Riesz Derivatives through Dunkl Operators”, Mathematics, 11:19 (2023), 4073  crossref
    15. Ali El Mfadel, M'hamed Elomari, “Moduli of smoothness and generalized canonical Fourier–Bessel diffrential operator on the half-line”, J. Pseudo-Differ. Oper. Appl., 14:2 (2023)  crossref
    16. El Hamma M. Daher R. Khalil Ch., “Equivalence of K-Functionals and Modulus of Smoothness Constructed By First Hankel-Clifford Transform”, J. Anal., 30:2 (2022), 667–676  crossref  mathscinet  isi  scopus
    17. El Ouadih S., Daher R., Tyr O., Saadi F., “Equivalence of K-Functionals and Moduli of Smoothness Generated By the Beltrami-Laplace Operator on the Spaces S-(P,S-Q)(SIGMA(M-1))”, Rend. Circ. Mat. Palermo, 71:1 (2022), 445–458  crossref  mathscinet  isi  scopus
    18. Larbi Rakhimi, Radouan Daher, “Modulus of Smoothness and K-Functionals Constructed by Generalized Laguerre-Bessel Operator”, Tatra Mountains Mathematical Publications, 81:1 (2022), 107  crossref
    19. Ali El Mfadel, Said Melliani, M'hamed Elomari, Mohammad Mirzazadeh, “New Results on the Equivalence of K -Functionals and Modulus of Continuity of Functions Defined on the Sobolev Space Constructed by the Generalized Jacobi-Dunkl Operator”, Advances in Mathematical Physics, 2022 (2022), 1  crossref
    20. Sergey Volosivets, “Weighted integrability of Fourier-Dunkl transforms and generalized Lipschitz classes”, Anal.Math.Phys., 12:5 (2022)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
    Statistics & downloads:
    Abstract page:723
    Full-text PDF :262
    References:99
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025