|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 8, Pages 3–15
(Mi ivm1675)
|
|
|
|
This article is cited in 43 scientific papers (total in 43 papers)
Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations
S. S. Platonov, E. S. Belkina Petrozavodsk State University
Abstract:
In a Hilbert space $L_{2,\alpha}:=L_2(\mathbb{R},|x|^{2\alpha+1}dx)$, $\alpha>-1/2$, we study the generalized Dunkl translations constructed by the Dunkl differential-difference operator. Using the generalized Dunkl translations, we define generalized modulus of smoothness in the space $L_{2,\alpha}$. On the base of the Dunkl operator we define Sobolev-type spaces and $K$-functionals. The main result of the paper is the proof of the equivalence theorem for a $K$-functional and a modulus of smoothness.
Keywords:
Dunkl operator, generalized Dunkl translation, $K$-functional, modulus of smoothness.
Received: 26.07.2006
Citation:
S. S. Platonov, E. S. Belkina, “Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 8, 3–15; Russian Math. (Iz. VUZ), 52:8 (2008), 1–11
Linking options:
https://www.mathnet.ru/eng/ivm1675 https://www.mathnet.ru/eng/ivm/y2008/i8/p3
|
Statistics & downloads: |
Abstract page: | 687 | Full-text PDF : | 245 | References: | 84 | First page: | 2 |
|